
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 1

Edge-facilitated Augmented Vision in
Vehicle-to-Everything Networks

Pengyuan Zhou, Member, IEEE, Tristan Braud, Member, IEEE, Aleksandr Zavodovski, Member, IEEE,
Zhi Liu, Senior member, IEEE, Xianfu Chen, Member, IEEE,

Pan Hui, Fellow, IEEE, Jussi Kangasharju, Member, IEEE

Abstract—Vehicular communication applications require an
efficient communication architecture for timely information deliv-
ery. Centralized, cloud-based infrastructures present latencies too
high to satisfy the requirements of emergency information pro-
cessing and transmission, while Vehicle-to-Vehicle communication
is too variable for reliable in-time information transmission. In
this paper, we present EAVVE, a novel Vehicle-to-Everything
system, consisting of vehicles with and without comprehensive
data processing capabilities, facilitated by edge servers co-located
with roadside units. Adding computation capabilities at the edge
of the network allows reducing the overall latency compared
to vehicle-to-cloud and makes up for scenarios in which in-
vehicle computational power is not sufficient to satisfy the service
demand. To improve the offloading efficiency, we propose a
decentralized algorithm for real-time task scheduling and a
client/server algorithm for information filtering. We demonstrate
the practical applications of EAVVE with a bandwidth-hungry,
latency constrained real-life prototype system that connects
vehicular vision through Augmented Reality vision. We evaluate
this prototype system with real-life road tests. We complement
this practical evaluation with extensive simulations based on real-
world base station and vehicular traffic data to demonstrate the
scalability of EAVVE and its performance in citywide scenarios.
EAVVE decreases the latency by 42.6% and 78.7% compared to
local and remote cloud solutions while relaxing congestion at the
bottleneck by 99% with reasonable infrastructure expenditure.

Index Terms—Edge Computing, V2X, Augmented Reality

I. INTRODUCTION

In recent years, we have seen the apparition of multiple
systems assisting or replacing humans in driving vehicles.
These systems are becoming increasingly robust but also
more complex. In 2018, California and Shanghai led the way
towards large-scale adoption of automated cars by authorizing
the deployment of autonomous vehicles on public roads for
testing purposes [1], [2]. Modern vehicles feature a variety
of systems for driver assistance in various scenarios such as
lane following, emergency braking, and automated parking.
These systems enhance the driving experience and drastically
improve road safety. However, in most cases, they are limited
to the point of view of a single vehicle. Complex scenarios
may benefit from aggregating the points of views of several
vehicles. For instance, if the distance to an obstacle is too
short to perform emergency braking safely, the vehicle may
choose another manoeuvre, such as steering into another
lane. The system should not only request status from other
nearby vehicles but also advertise the manoeuvre to the
most immediate neighbours. Vehicular communication sys-
tems play a key role in sharing information between vehicles

2
1

Fig. 1: Vehicular accidents.

and roadside units (RSU). Current solutions focus on four
types of communication: vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), vehicle-to-cloud (V2C) and vehicle-
to-everything (V2X) [3]–[8]. Although these solutions fulfill
basic demands, efficiently sharing complex and large volumes
of data among vehicles at scale remains a challenge.

In this paper, we address more particularly the problem of
sharing vision among vehicles at scale. We believe that in
order to further improve vehicular safety, vehicles and RSUs
should aggregate the information collected by their respective
sensors within a more complete vision of the road status.
Figure 1 illustrates two types of vehicular accidents partly
caused by the lack of visibility.

(i) The driver in the leading vehicle sees the pedestrian
running across the street and slows down up to stop.
However, the view of the driver in the following vehicle is
blocked by the leading vehicle. The driver is not aware of
the pedestrian and decides to overtake the leading vehicle,
resulting in a fatal accident.

(ii) Some vehicles are double-parked and block a lane. The
cars are parked right after the corner, out of the line-of-
sight of the cars turning right. The leading vehicle turns
slowly and was able to avoid an accident. However, the
next car turns too fast to avoid a collision.

Both accidents would be avoided if the vehicles could share
their visions in real-time. Sharing vision between two vehicles
is a nontrivial issue. Further extending this paradigm to
multiple vehicles at a large scale and in real-time significantly
increases the complexity of the system. In this scenario,
vehicles are flooded with a large number of ambient broadcast
messages. To avoid information overload and its consequences
(driver distraction, performance drops, network congestion),
vehicles must select only the data relevant to their context. To
tackle this challenge and improve the performance of V2X, we
propose EAVVE (pronounced ’eevee’), the first detailed V2X
framework for sharing augmented contextual information in

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2

Vehicle

RSU Base Station
Edge

Internet

Phone Others
Device

Fig. 2: EAVVE system model. The shaded areas show the
logical division between the Device, the Edge (where edge
server can be deployed) and the Internet. The inner boxes
represent the physical entities.

real-time. V2X presents the advantage of combining the high
availability of licensed spectrum technologies (LTE, 5G) with
the dynamicity and ubiquity V2V and V2I communication in
the unlicensed spectrum [9]. We illustrate the performance of
this system by analyzing a specific case of Augmented Reality
Head-Up Display (ARHUD), where vision sharing allows to
highlight obstacles not in the direct line of sight of the user.
In summary, we make the following contributions:

• We design and analyze EAVVE, a new V2X system based
on edge computing. EAVVE allows vehicles with and
without data processing capabilities to share contextual
information at a large scale in real-time (§III).

• We apply EAVVE to a concrete case of connecting ve-
hicle views using ARHUD. This displays the advantages
of EAVVE, i.e., improving the scalability and efficiency
of contextual information sharing while decreasing the
transmission latency (§VII).

• We implement a prototype and evaluate EAVVE through
real-life road testing. We expand our evaluation with an
extensive set of simulations based on both a real dataset
and our test results, and simulation results show that
EAVVE offers noticeable performance improvements.
It decreases latency by 42.6% and 78.7% compared
with local (150km) and remote (2000km) cloud service,
scales well in various traffic densities, with reasonable
expenditure in infrastructure, 6.3 edge servers per square
kilometre in the centre of London (§VIII).

II. RELATED WORK

Emerging technologies not only enable various functions for
autonomous vehicles but also bring new challenges.
Edge Computing brings computation close to the user and is
a key component of the 5G architecture. Many works have
studied the topic [10]–[12]. Edge computing has attracted
attention in a vehicular context, such as [13], which explores
the integration of 5G, SDN, MEC, and vehicular networks.
Uncoordinated strategies for edge service placement have been
investigated in [14], and the results have shown that they

work well for this problem. Tran et al. investigate the optimal
task offloading scheduling method at the edge for faster
completion [15]. A solution for predictive task offloading
to the edge is suggested in [16]. Rodrigues et al. combine
advanced VM migration with transmission power control to
minimize service delay experienced by smart vehicles in
edge clouds utilization [17]. In [18], the hybrid approach
of [17] is extended by sophisticated mathematical modeling
and application of the Particle Swarm Optimization algorithm.
The potential of software-defined networking for vehicular
edge computing is highlighted by [19]. Tang et al. give an
outlook for the future role of machine learning and 6G in
the context of vehicular networking [20]. Meanwhile, the
fundamental issues, i.e., architecture design, communication
process, network protocols, and implementation concerns are
yet to be explored. In this work, we propose the overall system
and detailed functionality design with deployment evaluation
based on public datasets.
V2X is gaining more attention from both academia and indus-
try [21], [22]. Most works focus on overall system design and
network protocol stack design [6], [23]. Our work integrates
edge computing to gain low latency, propose information
filtering policy to improve data processing efficiency, build
the practical prototype and evaluate its performance with road
tests.
Applications. Developing vehicular applications have
achieved some results [24]–[27], but without improvement
from system and networking point of view, those applications
face difficulties to scale in realistic situations.

III. SYSTEM DESIGN

In this section, we discuss our system design. We first
specify the system architecture before presenting the details
of the microservices and the data flows between them.

A. System Architecture
Since latency is the key performance factor of vehicular

networking system, we simplify the architecture to accelerate
the data flow. EAVVE is defined in three layers: Device,
Edge and Internet as shown in Figure 2. The edge layer
contains the edge servers that are co-located with base stations
or RSUs and operates within the area defined by the range
of its corresponding infrastructure. The device layer contains
other wireless devices involved in the communications, such
as the vehicles, phones of pedestrians and wireless sensor
units attached to bicycles. Vehicles, RSUs, and other devices
communicate via protocols such as Dedicated Short Range
Communications (DSRC), Cellular V2X (C-V2X) or hybrid
architectures [6], [28], [29]. In this work, we consider the
connected vehicle vision (CVV) as our use case. CVV requires
real-time object detection capabilities. Therefore, we integrate
machine learning capacities into the design of the edge servers
and smart vehicles, as discussed in the following section.

B. System Data Flow
To better introduce the functionalities and data flows, we

classify devices into two categories, namely client devices

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 3

Communication

Cloud Data CenterTransmission
Inter process communication
Sensor data
Image frames
Detected objects

Object Detector

Edge Server

7

8 9 Sensor Data Update

Object Update
Situation

Aggregation

10 12

13
11

14

Display

Data Prioritization

Data Filtering

6

5

4

Client

Sensor
data

Camera IMU

Object Detector

Image 2

Results 3

1

Smart SenderRegular Sender

Sender Devices

Sensor
data

CameraIMU

Image 2

1

Situation
Aggregation

Fig. 3: EAVVE system data flow.

and sender devices. A client device refers to any unit that
processes and displays received contextual information, e.g.,
the receiver and ARHUD in a vehicle. A sender device refers
to any unit that sends out contextual information such as sensor
data, captured camera images and object detection results. In
this context, we name a sender with an object detector as smart
sender as opposed to regular sender (Figure 3). An entity may
have one or multiple units mentioned above. For instance, a
smart vehicle with object detection capacity has a client device
and a smart sender, a regular vehicle has a client device and
a regular sender, and smartphones, surveillance cameras and
bicycles only have regular senders. The edge server provides
object detection offloading and data aggregation with an object
detector and data filtering module. Client devices, sender
devices, and edge devices run microservices continuously to
process the data. To minimize operational latency, we need
an efficient data flow. As shown by the numbered arrows in
Figure 3, the major data flow includes the following steps:
(1) Sensor devices collect and broadcast basic information
including UID (unique ID), latitude, longitude, motion (speed,
heading angle, acceleration), type (pedestrian, bicycle, vehi-
cle), and size of the object. (2) Cameras on smart vehicles
take images periodically and load them to the on-board object
detector. Cameras on other devices send images to a nearby
edge server. (3) The object detector broadcasts the detection
results including the type, size, and position of the detected
objects (calculated based on relative distance, see §VIII). The
sensor data and detection results are broadcasted via DSRC at
10 Hz according to DSRC standard SAE J2735 BSM [30].
(4–5) The client device filters and prioritizes the received
data based on a predefined mechanism. (6) ARHUD displays
updated information (§VII). (7) The edge server updates the
collected sensor data. (8) The edge server loads the received
camera images (step 2) to the object detector. (9) The edge

server sends the detection result to the sender. (10–11) The
edge server updates the detected objects with its detection
results combined with information received from nearby smart
vehicles. (12–14) The edge server updates the road situation
and aggregates data to the cloud database periodically.

As such, each vehicle is able to update the effective road
situation and display it in real-time to facilitate driving.
Meanwhile, the edge server maintains the nearby road situation
and has thus the potential for fine-grained traffic monitoring
and control. In the next section, we explain the networking
model and detail the algorithms deployed in the vehicle on-
board unit (OBU) and on the edge server.

IV. SYSTEM MODEL

A. Networking Model
Node Classification. Until self-driving cars become the norm,
the typical road scenario will be a mix of regular vehicles
among an increasing number of driverless vehicles. Currently,
most vehicles have access to the Internet via cellular networks
and assist drivers with cloud services such as Google Maps.
In the future, we foresee vehicles to be connected not only
to the Internet but also to other vehicles and RSUs. As such,
we classify the network nodes according to their roles and
capacities, as follows. Smart vehicles (vehicles with powerful
OBU), regular vehicles (vehicles without powerful OBU, i.e.,
standard cars), edge servers, RSUs (traffic signals, roadside
sensors) and Internet (base stations, core network and cloud).
We assume all vehicles have a wireless interface for V2V
and V2I connection, e.g., PC5 interface for C-V2X [23].
For simplicity, we assume all RSUs (that are not co-located
with an edge server) are simple gateways without additional
processing capabilities and offload their workloads to a nearby
edge server. As a result, the network is a hybrid integration,
including V2V, V2E, V2I, and V2C. Each node communicates
with the network by sending out one-hop broadcast or mul-
ticast messages and filters received messages with predefined
rules.
Communication Model. In our implementation, the beacons
and the computation input/output data transmissions are on
the same frequency, i.e., 30 Hz. Each beacon packet has a
size of 12 B, each computation input packet of the application
has a size of 51.8 KB and each computation output packet
is 512 B. Since the beacons have much smaller data volume
than the computation input data (image frame) and the output
data packet (detection result), beacon congestion control and
signaling overhead optimization will have a minimal impact
on overall performance. Besides, these topics are already
covered by a rich literature [31]–[34]. Instead, we focus the
networking model on the entities involved in computation
offloading, i.e., vehicles V = {V1, V2, ..., Vv} and edge servers
E = {E1, E2, ..., Ee}. VEj denotes the set of regular vehicles
that are offloading to Ej at a timepoint. The capacity of uplink
and downlink of each base station that co-located with an edge
server are denoted as B

ul and B
dl (bps). The instantaneous

uplink and downlink data rate of a vehicle are denoted as R
ul

and R
dl (bps). The effective data rate is affected by lots of

factors such as signal strength, electromagnetic interference

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 4

and noise, as formulated in [35] and [36]. For simplicity, we
assume each vehicle gets a fair share of B

ul and B
dl, i.e.,

R
ul
Ej

= B
ul
/|VEj | and R

dl
Ej

= B
dl
/|VEj |.

B. Task Model
We consider that each vehicle V has a computation task

that rises as a sequence of jobs (or invocations), ⌧V ,
(IV , CV , OV , TV , PV , DV). Here IV and OV denote the data
volume of computation input and output data, CV denotes the
execution time, i.e., the total number of CPU cycles multiplied
by the clock cycle, required to accomplish the processing of
⌧V . TV denotes the period of ⌧V . PV denotes the priority
of ⌧V (§VI). DV denotes the deadline of ⌧V , i.e., the period
within which OV must return to the vehicle to be considered
valid (see more details in §IV-C). In our implementation, we
let all vehicles have the same values of IV , CV and OV .

C. System Characteristics
A road net area can be considered as a large multiprocessor

system, within which each edge server functions as a proces-
sor, and each vehicle periodically sends out the jobs (instances
of its task ⌧V). Based on the vehicular application feature,
we recap the system characteristics utilizing some terms
from multiprocessor scheduling, as follows: 1) Homogeneous:
The edge servers are identical hence have the same rate of
execution of all tasks. From the optimization point of view,
how many threads each edge server executes do not affect the
complexity of the task scheduling algorithm. For simplicity,
we assume each edge server executes all received tasks in
one thread. 2) Arbitrary deadlines: We set the deadline of
each task as the inversely proportional value of its priority,
i.e., DV = t/PV where t is a predefined period value. The
rationale is that a more important task should be prioritized in
the sense of being processed and sent back the result faster.
3) Task-level migration: The jobs of a task may execute on
different edge servers. Each job can only execute on a single
edge server. 4) Fixed job priority: The jobs of a task may
have different priorities. Each job has a single static priority.
5) Preemptive: Any task can be preempted by a task with
higher priority at any time.

It is worth noting that our system has several different
key points comparing with a general multiprocessor system:
1) The definition of priority is twofold: the importance of
the job, e.g. the summarized importance of the identified
objects in an image, and, the rank of the job in the processing
queue. Assuming using earliest deadline first (EDF) scheduling
algorithm, the rank of the job in the queue coincides with its
importance (§IV-B). In other words, a more important task
has a smaller deadline hence a higher rank in the processing
queue. 2) The priority of each task can only be figured out
after being processed by an edge server. Hence the server can
not tell the deadline of each task before queuing. To tackle
this challenge, we propose to use the historical track of each
vehicle’s task to predict the deadline of its current job (§VI).
3) Unlike a centralized or integrated system, a distributed
wireless system like V2X brings considerable latency to collect
statistics from clients, especially when performing real-time

global scheduling. As such, the system requires solutions other
than centralized scheduling.

Next, we formulate the mathematical model and problem.
We present the optimization algorithm and prioritization policy
addressing the key points in §VI.

D. Offloading Model
The offloading process for each regular vehicle includes

input data transmission, processing in an edge server and
output data transmission. The time cost for transmitting the
computation input data of ⌧V to edge server E is:

T
off
⌧V =

IV

Rul
E

(1)

The time costs for transmitting the output data to V is:

T
back
⌧V =

OV

Rdl
E

(2)

The execution time of E on ⌧V is:

T
exec
⌧V = CV +

X

v2queue

Cv (3)

where
P

v2queue Cv is the sum of the execution time of the
tasks ranked before ⌧V in the processing queue. The length
of queue, |queue|, equals the number of received tasks for
single thread execution in edge servers (§IV-C). Then we can
compute the total overhead of offloading ⌧V from a regular
vehicle V in terms of latency as:

L
E
⌧V = T

off
⌧V + T

exec
⌧V + T

back
⌧V (4)

Smart vehicle process data in-car and send out the result.
Therefore, the latency only contains the execution and down-
link latencies. Since the data transmission of smart vehicles
has little effect on the performance of edge offloading, we
neglect it in the rest of this paper.

E. Edge Resource Allocation
To improve the system performance, a fundamental chal-

lenge is how to utilize edge resources efficiently for better task
offloading performance. Following the definition of network
nodes in §IV-A, each regular vehicle demands one (multiple-
server offloading is left for future investigation) edge server for
complementary data processing power. We denote aij 2 {0, 1}
as the offloading decision of edge server Ei regarding the
computation task of regular vehicle Vj , defined as follows.

aij =

(
1 if Vj offloads to Ei

0 otherwise
(5)

The allocation can be denoted by a (0, 1)-matrix as follows.

Arv,e = (a1,a2, ...,ae) = (aij)rv⇥e (6)

where rv, e denote the number of regular vehicle and edge
servers (as defined in §IV-A), respectively. Based on Equation
1-5, the overall overhead of edge offloaded, LE

⌧V can be
calculated as

LE
⌧V = (

CV

2
+ �)

eX

j=1

|aj|
2 +

3CV

2
rv, (7)

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 5

where � = IV /B
ul +OV /B

dl, |aj| is the number of vehicles
offloading to Ej . Please refer to Appendix A for the derivation
of eq. (7).

V. PROBLEM FORMULATION

The overall goal of optimization is to maximize the summed
priorities of the valid feedback results that are returned in
time while minimizing the overall delay. We denote bij as
the validity matrix of feedback results:

bij =

(
1 if LEj

⌧Vi
 DVi

0 otherwise
(8)

where �|aj| is the offloading delay of Ej . Based on eq. (7),
the problem can be formulated as

G1 :Maximize

rvX

i=1

eX

j=1

aijbijPVi

G2 :Minimize LE
⌧V

s.t. C1 : 8i 2 [1, rv],
eX

j=1

aij = 1

s.t. C2 :
eX

j=1

|aj| = rv

(9)

Constraint C1 and C2 guarantee that each vehicle offloads
to one and only one edge server at any timepoint. In other
words, a regular vehicle always has an offloading edge server
even during peak period. However, an edge server with a long
processing buffer queue will drop the tasks that are already
expired without execution. The minimization problem (G2)
equals to the following:

Minimize

eX

j=1

|aj|
2 (10)

According to Cauchy–Schwarz inequality [37], we know

(
X

xiyi)
2
 (

X
x
2
i)(

X
y
2
i) (11)

Set yi = 1, 8i, we get

(
X

xi)
2
 (

X
x
2
i) (12)

Together with C2, we get the lower bound of LE
⌧V :

minLE
⌧V = (

CV

2
+ �)rv2 +

3CV

2
rv

s.t. C1 : |aj| =
rv

e
, 8j 2 [1, e]

(13)

which indicates that G2 is achieved when tasks are equally
distributed to edge servers.

We briefly describe a polynomial-time algorithm adapted
from global early deadline first (EDF) as a centralized solution
of G1 and G2 in Appendix B. Nevertheless, as described in the
key point 3 in §IV-C, more improvements are required to en-
counter the affect of additional latency brought by centralized
scheduler. Therefore, we propose a decentralized algorithm to
address this challenge in the next section.

Algorithm 1: Regular Vehicles Job Assignment
1 . Regular vehicle
2 map getEdgeServerMap(location)
3 procedure threadUpdateEdgeServerMap:
4 if location changed then
5 map getEdgeServerMap(location)
6 else
7 sleep
8 procedure threadOffloadImageRecJob(job):
9 if map has reachable servers then

10 broadcast job to edge
11 else
12 send job to cloud
13 . Edge server
14 procedure threadReceiveJob(job):
15 put job into execution queue
16 broadcast job id and est. completion time
17 procedure threadReceiveUpdate(id, time):
18 if job with id is in queue and
19 its estimated completion time > time then
20 if job is in execution then
21 preempt the job
22 else
23 remove the job from queue

VI. ALGORITHM

In this section, we present a detailed solution and algorithms
to tackle the challenges described in §IV and §V.

An essential feature of the problem, as stated in key point
2 at §IV-C, is that we do not assume prior knowledge for task
priority assignment, which is a widely adopted assumption
in most related works. We include such feature for a good
reason, i.e., most data learning tasks such as NLP or image
processing can only tell the value (meaning) of the data after
processing. However, the value contained in the data is critical
for priority (deadline) assignment. To tackle this challenge,
we propose to use a mini-batch of historical job priorities as
the reference to assign priorities to newly-arrived jobs. For
instance, for the setup of batch size 3, the scheduler averages
the priorities of the previous three jobs and assigns the priority
to the next job using the average value.

We start by addressing the assignment problem of edge
server resource. We define a set of nearby edge servers as an
edge server pool. The servers in a pool have wired connections
to each other and can communicate with ignorable latencies.
Each pool does not overlap with any other and is assigned
a different broadcast IP address. In this work, we rely on
the cloud, which executes a service responsible for providing
vehicles with the information of their nearby edge server pools.
The number of edge servers within each area depends on the
server placement strategy and the traffic condition. Please refer
to §VIII-D for the details. Technically, based on their location
and movement trajectories, vehicles preload from cloud service
maps with the locations of edge server pools and select the
closest one in the heading direction as the offloading candidate.
Given that at least one available edge server pool is within the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 6

wireless link reach, the vehicle broadcasts the job using its
wireless interface. There might be multiple edge servers in
the pool available to execute the job. To avoid a situation
where multiple servers schedule the job for execution, we
introduce a decentralized algorithm as shown in Algorithm 1.
When the edge server receives a job, it assigns priority to it
using the mini-batch average and broadcasts its decision on
the wired interface (that is used for communication between
edge servers). The job is then placed in a special purpose wait
queue, which is executed only when the main queue runs out of
jobs. In the process of conflict resolution, the server having the
shortest main queue wins, and other edge servers drop the task
from their wait queues. Finally, the winning edge server places
the job in its main preemptive queue. In comparison with the
centralized scheduling solutions, the proposed decentralized
algorithm suits better V2X offloading scenarios thanks to two
of its advantages: 1) It avoids to present a single point of
failure. Algorithm 1 distributes the communication between
several edge servers while centralized solutions would fail
if the scheduler malfunctions. 2) It has a lower signaling
overhead. Algorithm 1 requires the edge servers to exchange
“estimated completion time”, while centralized solutions re-
quire the scheduler to collect the waiting queue lengths and
job priorities. Next, we introduce the detailed policy that the
system uses to prioritize data.

A. Prioritization Policy

Most safety applications require a vehicle to broadcast its
own information to all the vehicles within the neighbourhood.
However, in most cases, a vehicle only needs information
from some vehicles within the immediate neighbourhood.
Therefore, it is crucial to design the data sharing policy
to avoid unnecessary information processing. This is highly
important for assisted driving where the goal is to provide
the driver with only valuable information in real-time. For
instance, an ARHUD filled with icons representing all nearby
vehicles and RSUs can confuse the driver instead of providing
assistance. Similarly, propagating nonrelevant information will
lead to network congestion and increased latency. We propose
an information prioritization policy to filter the data and select
the most valuable one to display.

We assume the processing result of each task, OV , has
a list of objects, each of which refers to metadata that has
some level of importance to the client. More specifically,
in our use case, the processing result of each image frame
contains a list of detected objects, each of which has a priority
determined by its corresponding information, e.g., distance,
relevance and catalogue (pedestrian, vehicle, bird). Each object
is defined as Mi , (Pi, Ii), where Pi and Ii denote the
priority and the corresponding information of object i. Let
MV = {M1,M2, ...,Mm} denote the object list in OV . The
priority of ⌧V is calculated as the summed priorities of the
object, i.e., PV =

Pm
i=1 Pi.

Furthermore, the priority of an object i is defined as
Pi , ⇢(DIi, REi, IMi), where DI,RE, IM denote the
distance, relevance and importance of the object. The key
assumption is the accurate localization of vehicles and detected

Edge Server

S

R

S

R

S Smart vehicle
R Regular vehicle

DSRC
DSRC/LTE

Sensor data
Image frames
Detected objects

R1S1

S2

R2

Fig. 4: EAVVE prioritized transmission.

objects. As the relevant technologies such as RTK GNSS and
Depth Estimation develop, we envision that self-localization
and relevant coordinates of detected objects will achieve fine
accuracy in the foreseeable future.

Distance. We filter out data sent from outside the nearby area,
defined by the radius of concern. For instance, in Figure 4, the
edge server receives the images captured by R2 and broadcasts
the extracted data. S1, S2, R1 filter it out as R2 is far away
and the likelihood of the messages containing immediately
relevant information is lower.

Relevance. We rank the messages filtered by distance accord-
ing to their relevance. A message is considered more relevant
if the receiver is currently moving towards the location of the
sender. For a moving vehicle, the most relevant message is
sent from the closest leading vehicle (or closest RSU which
is in front of the vehicle’s moving direction); this can be
estimated from the moving direction and GPS coordinates of
the sender (included in the message) and the current location
and direction of the receiver. The messages from other leading
vehicles and the following ones have lower relevance. The
ones from vehicles in the opposite direction have even lower
relevance. For instance, S1 receives data from R1 and S2
and prioritizes the former, since S2 is moving in the opposite
direction on another lane, thus its observations are less likely
to be relevant compared to R1.

Importance. The system classifies each detected object into
a preference list according to its importance. The preference
definition follows common society rule while may slightly
vary in different areas. A basic sample rule we utilize is,
for instance, pedestrian > bicyclist > vehicle > obstacle.
Among the huge number of detected objects, an edge server
and smart vehicle should select the most important ones and
broadcast their existence in priority.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 7

B. Data Filtering Algorithms
EAVVE’s architecture relies on parallel threads running

simultaneously to handle data in real-time. In this section,
we discuss the details of the data filtering algorithms for
the sender device, the client device and the edge server.
Sender Algorithm. Sender devices include smart vehicles and
regular vehicles that differ in their data processing capabili-
ties. Smart vehicles perform object detection on their OBU
and broadcast the results directly. Regular vehicles rely on
edge servers for object detection. Due to space limitation,
we focus on smart vehicles. The detail of the algorithm is
represented in Algorithm 2. A vehicle collects and broadcasts
IMU data every 0.1 second by default (lines 4 and 14).
Meanwhile, it takes photos and broadcasts the detection results
periodically. In this work, the detection procedure runs in
a single sequence (i.e., not multithreaded), to present the
bottom-line performance (line 9). With multithreaded object
detection, EAVVE is able to process images at higher frame
rates, thus providing better service experience. To synchronize
data transmission, the OBU adapts the count down timer
of photographing according to the delay of each detection
task (line 10). In this way, a vehicle makes its best effort
to broadcast IMU data and detection result with the minimum
time difference. However, due to networking issues and system
performance differences, packets from different vehicles may
arrive at a vehicle at different timestamps. The client device
uses a buffer to solve this issue, as follows.
Client Algorithm. As shown in Algorithm 3, the client unit
uses a buffer to patch together the received packets within a
period tBuff (line 4),

0 < tBuff T � t(policy) (14)

where t(policy) is the policy execution latency with the
average time complexity of O (1), which is about 1.2ms in our
road test. tBuff can be set to any value within the interval
in eq. (14). The parallel threads push new data incoming
within tBuff into the tail of the buffer (lines 7 and 10),
while displaying the data in the head of the buffer. Once
a same period with sender broadcast, the client resets the
buffer (line 3). Larger tBuff potentially increase the amount
of data to be displayed, while increasing the number of cross-
thread operations correspondingly. In §VIII, tBuff is set to
90ms to display more received data. As mentioned before,
vehicles need to display only the most pertinent information
by filtering the received data. EAVVE tackles this challenge
via three steps:

(i) The system only processes the packet sent from within
the concerned radius (line 6).

(ii) Two objects are considered as duplicates if their
distance is less than the default tolerance deviation
� (line 16). The tolerance deviation varies for a different
type of object. The rule is that a larger object has a larger
tolerance deviation. To minimize latency, OBU randomly
chooses one of the duplicates to display.

(iii) Among the duplicates, IMU data always has the highest
priority since it is more reliable and accurate than the
detection results (line 20).

Algorithm 2: Smart Sender Algorithm
1 procedure threadIMU:
2 while (!/*break loop*/) do
3 count down T // T=0.1(s) by

default

4 collect IMUdata
5 append IMUdata to imuList
6 procedure threadDetector:
7 while (!/*break loop*/) do
8 take image (IMG)
9 detect Objs // single sequence

10 count down (T - delayDetection)
11 add Objs to detectionList
12 procedure threadSend:
13 if imuList not empty then
14 broadcast IMUdata
15 reset imuList
16 if detectionList not empty then
17 broadcast detected Objs
18 reset detectionList

Algorithm 3: Client Algorithm
1 procedure threadPreprocess:
2 while (!/*break loop*/) do
3 reset Layer1Tmp, Layer2Tmp
4 while (t < tBuff) do // buffer

5 receive IMUdata and detected Objs
6 if (xSender, ySender) within rC then
7 append imuData to Layer1Tmp
8 for Obj in Objs do
9 if (xObj, yObj) within rC then

10 append Obj to Layer2Tmp
11 reset t
12 count down (T - tBuff)
13 procedure threadDisplay:
14 while (!/*break loop*/) do
15 if Layer2Tmp not empty then
16 if D(Objs) ¡ � then
17 Remove overlapped objs
18 Display Objs of Layer2Tmp
19 if Layer1Tmp not empty then
20 Display senders in Layer1Tmp on top

The edge server runs a mixed algorithm combining the
threadDetector of the sender algorithm and threadPreprocess
of the client algorithm. It offloads the object detection tasks
from regular vehicles via threadDetector. Meanwhile, it ag-
gregates IMU data and detection results from nearby vehicles
by removing the duplicated data via threadPreprocess. It also
periodically uploads the aggregated road situation to the cloud
database or the traffic centre for traffic monitoring.

VII. AUGMENTED REALITY APPLICATIONS FOR
VEHICULAR NETWORKS

In this section, we describe the details of the AR applica-
tion we have implemented to showcase EAVVE. Augmented

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

Reality Head-up Displays (ARHUD) are a new technology
that aims at assisting the driver by showing traffic informa-
tion on the windshield of the vehicle. Currently, industrial
and academic efforts focus on providing better visualization.
EAVVE, on the other hand, enhances ARHUD with extensive
information gathered from nearby vehicles. In the scenario
of V2E, an edge server provides object detection services
for nearby regular vehicles. An in-vehicle IoT device (e.g.,
a smartphone setup behind the windshield) works as both the
sender device transmitting data to the edge server and the client
device visualizing the received data. To detect objects and
augment the user’s view, the IoT device periodically uploads
the sensor data and captured image frames to the edge server.
The transmitted data includes the current street view image
from the camera, GPS coordinates, motion and timestamp.
Upon reception of the data, the edge server first executes
object detection on the image with the object detector. With
state-of-the-art deep learning frameworks and GPU hardware
acceleration, the object detector can detect objects in real-time.
In the deployment, we built the prototype using YOLO version
3 and OpenCV in a server with built-in Nvidia GTX 1070
GPU. Each image takes about 20 ms to process. For each
detected object, a rectangular boundary (or a representative
icon) is also returned by the detector. In the case of a smart
vehicle with comprehensive data processing capabilities, the
application runs on the OBU in a similar way. The application
directly analyzes the images captured by the in-vehicle camera,
rather than receiving them over the network as in the case with
the edge server.

VIII. EVALUATION

A. Implementation

In this subsection, we describe the implementation of
EAVVE. We follow the system design and use case described
in the previous sections to develop a connected vehicle vision
system. This system detects pedestrians, cars, buses and traffic
lights on camera images and shares the results among vehicles
in real-time.

We deploy the object detector (Figure. 3) on a Linux
platform with the GPU implementation of YOLO version
3, one of the current state-of-the-art object detection algo-
rithms. We use OpenCV for general image processing such
as perspective transformation (from one vehicle’s to another
one’s). We implement the client device and part of the sender
device (camera, IMU data collector) on the Android platform,
to simulate the hardware and software environment of the
vehicular equipment for augmented vision. The GPS sensor
reports the GPS coordinates of the vehicle, and the monocular
camera captures the front-facing view from the vehicle. We
use OpenGL to render the augmented information on top of
the camera view. Our current implementation operates with
a monocular camera (on Android phone), while real vehicles
will most probably embed stereoscopic cameras which will
make many transformations easier. Despite this limitation, our
prototype is fully functional and hence shows the potential of
productisation.

(a) Leading vehicle. (b) Following vehicle.

(c) Edge server screenshot.

Fig. 5: Road test device setup.

TABLE I: Communication set up

Protocol UL Freq UL Bw RTT

V2V/V2E 802.11ac 5180MHz 27Mbps 6.06ms
V2LC 4G LTE 2530MHz 12Mbps 50ms
V2RC 4G LTE 2530MHz 12Mbps 160ms

B. Prototype and Road Test

Prototype. We use the prototype described in §VIII-A. To
emulate in-vehicle devices, we install the client-side appli-
cation on two Huawei Mate9 Pro smartphones, each with a
2.4 (1.8) GHz octa-core HiSilicon Kirin 960 CPU and 4GB of
memory. Our edge server is deployed on a MSI GS65 Stealth
8SG, each of which has a 6-core I7-8750H CPU, 32GB of
memory, and an Nvidia RTX 2080 Max-Q GPU. The hardware
capacity of our edge server is similar to a medium-priced
commodity edge server in 2018 [38]. To compare the benefits
of EAVVE to cloud computing, we create a virtual machine
instance on the Google Cloud platform, with 6 vCPUs, 16GB
of memory, and an Nvidia Tesla V100 GPU. We placed both
phones in a vehicle behind the windshield, working as the
in-vehicle camera, IMU and ARHUD, as shown in Figure 5.
Road Test. We drove two vehicles in downtown of a major
city, one following the other. We perform the following four
road tests with the networking setup shown in Table I.

• V2V: The test demonstrates communication between a
smart vehicle and a regular vehicle. We put the backpack
in the leading vehicle and connect it with the phone by
tethering to imitate a smart vehicle that communicates
with the following vehicle wirelessely. In this scenario,
the leading smart vehicle processes the captured data
and broadcasts the analysis result. The following regular

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

(a) Leading car in case 1. (b) Leading car in case 2.

Car Person
PersonCar Car

(c) Following car in case 1.

Car

Bus

CarCar
Car

(d) Following car in case 2.

Fig. 6: Road test of CVV. The detector labels the detected
objects with the white boxes and the detection error with red
arrows. Note that in (c), the driver can see the pedestrians
blocked by the leading vehicle. The driver can see the parked
cars around the corner in (d).

vehicle receives the result and renders it on ARHUD.
• V2E: We then put the backpack on the roadside to

imitate an edge server. We set the edge server in Access
Point (AP) mode so that the phones in both vehicles
communicate with the edge server directly. We set the
AP mode with IEEE 802.11ac and throttle the links
to get a similar frequency and bandwidth with IEEE
802.11P (5.9GHz, up to 27Mbps). We show the potential
improvement brought by newer technologies and infras-
tructures (e.g., edge servers co-located with base stations
and DSRC) through simulations.

• V2LC (Vehicle to Local Cloud): As a comparison, we
evaluate the performance of a Google cloud virtual ma-
chine in the same local area as the object detector. The
phones send the captured images to the cloud and receive
the extracted data via standard LTE connections.

• V2RC (Vehicle to Remote Cloud that is about 2000 km
away): Finally, we redo the previous test with a remote
Google cloud virtual machine.

Each round takes around 20 minutes with around 36000 image
transmissions at 30 fps.

C. AR Connected Vehicle Vision (CVV)

Showcase. Figure 6 illustrates two typical use cases of CVV,
in which the leading vehicle identifies objects in its vision
and transmits them to the following vehicle. Figure 6a shows
the common scenario in which pedestrians cross the street
unexpectedly. This scenario takes place on a narrow road,
where the vision of the driver in the following car is easily
blocked while the driver in the front car has a clear view
(see Figure 6c). This situation can be potentially dangerous
as the following vehicle cannot anticipate events happening in
front of the leading vehicle, and has thus less time to brake in
case the leading vehicle needs to stop urgently. CVV helps
the driver in the following to be aware of the pedestrians
blocked by the front car and slow down beforehand. In the

200 400 600 8000

200

400

600

800

(a) V2LC
200 400 600 8000

200

400

600

800

(b) V2RC
200 400 600 8000

200

400

600

800

(c) V2E

Fig. 7: Image transmission latency. X-axis: image ID, Y-axis:
latency (ms). We only show a part of the result due to space
limitation, the other parts have similar patterns.

second scenario, one vehicle has turned right at an intersection
while the other one is also going to turn. The leading vehicle
observed several parked cars on the roadside which block
one lane. An accident could happen if the following vehicle
turned into the blocked lane without driving carefully. With
CVV, the driver of the following vehicle can also “see” the
parked vehicles out of the line of sight around the corner, as
shown by the green rectangles with name tags in Figure 6d.
This enables the driver of the second vehicle to avoid turning
into the blocked lane. In summary, EAVVE allows enhancing
road safety by augmenting the driver’s vision with information
observed by another vehicle.
Measurements. We run the application in the rounds of road
test and measure the step by step latencies. Figure 7 shows
the image transmission latency of V2LC, V2RC and V2E.
Table II shows the integrated step-by-step latency of each
run. The numbers shown are averaged over the whole test
round (20 minutes and around 36000 image transmissions
and processings). The latency of CVV can be divided into
the following components: Client Data Collection, Uplink La-
tency (image transmission), Object Detection, Policy Control,
Downlink Latency (detection result transmission) and Display
Rendering.

As Table II shows, CVV with edge server is much faster
than with the cloud. Due to the hardware differences, the
algorithms run slightly faster on the cloud server than on
the edge server. Nevertheless, when using an edge server,
the sum of the uplink and downlink latencies decreases by
over 132.9 ms compared with using local cloud service, which
contributes to most of the time difference. In the case of a
remote cloud service, this difference increases to 663.1 ms.
This represents a 42.6% and 78.7% improvement over local
and remote cloud service, with an overall latency below
200 ms. This affirms our core assumption that edge comput-
ing can significantly improve latency-sensitive workloads by
performing data processing closer to the user. V2V has the
lowest latency out of all solutions, thanks to its straight data
processing pipeline without depending on third-party servers.
However, it does require a smart vehicle equipped with local
processing capabilities.

As mentioned at the beginning of §VIII, DSRC and 5G have
the potential to further improve the performance of EAVVE.
Both technologies can significantly decrease the communica-
tion latency of V2V and V2E, which will increase the benefit
of EAVVE over current solutions even more. We have shown

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 10

TABLE II: Step by step latency (ms).

Overall Data Collection Uplink Processing Downlink Policy Display

V2V 57.7 6.7 N/A 20.3 12.5 1.2 17

V2E 179.8 6.7 122.1 20.3 12.5 1.2 17

V2LC 311.9 6.7 233.0 19.3 34.5 1.4 17

V2RC 842.1 6.7 762.2 19.3 35.5 1.4 17

TABLE III: Number of base stations and macrocells in the
selected area of each city.

London Nottingham York

Base stations 4043 725 225

Macrocells 147 36 23

Fig. 8: Edge server placement based on traffic heatmap (Lon-
don/Nottingham/York). The numbers indicate the min and max
number of edge servers required to meet the request demand.
The size of the dots relates to the amount of traffic in the area.
Maximum number of required edge servers: 125, 67, 33.

Fig. 9: LTE base station distribution. Red dots indicate base
stations with coverage > 3000 m.

the obvious benefits of performing computation onboard or at
the edge compared to local or remote cloud by showing that
the improvement in processing time is not worth the increased
communication latency. In the next section, we further expand
on this model by discussing the edge server placement and
estimate the deployment cost based on a real dataset.

D. Edge Server Placement
To address the edge server placement problem, we consider

the base station and traffic distribution patterns in three cities
with different population densities, London, Nottingham, and
York (all in the UK). For each city, we focus on an area with a
size of 4 km * 5 km around the city center. For each area, we
use the public LTE base station location data1 and the traffic
volume data2. We cluster the traffic volume data according to

1https://unwiredlabs.com
2https://data.gov.uk/dataset/gb-road-traffic-counts

the GPS coordinates of vehicles and divide the selected area
into smaller areas according to the clustering result. The traffic
distribution and area partition results are shown in Figure 8.
Each colored dot represents the location of the aggregated
traffic, with size proportional to the traffic volume in 12 hours
during the daytime. In each area, we display the number of
deployed edge servers according to the average and peak traffic
volume. We then analyze the relationship between the base
station distribution and the traffic density, as it influences our
co-located edge server placement. Table III shows the number
of base stations located in each area. Some base stations
have coverage radius larger than 3km; we denote these as
“macrocells”. We plot these macrocells in red and the others
in blue, as shown in Figure 9. The base stations are distributed
evenly and reasonably match the density of the traffic. As a
result, using base stations as deployment points is not likely
going to deviate the edge server placement from the actual
traffic patterns. The maximum number of edge servers required
to meet the user demand during peak traffic is 125, 67, 33
for each area in London, Nottingham, and York, respectively.
This corresponds to respectively 6.3, 3.45 and 1.8 edge server
per square kilometer, a reasonable infrastructure investment
for high availability, real-time edge computing. As such, we
mainly deploy the edge servers within the macrocells located
closer to the aggregated traffic.

To evaluate the scalability of our system, we test the system
performance in various scenarios. Among the three major parts
of EAVVE, V2C and V2V respectively depend on the Internet
connection and smart vehicles. V2E, on the other hand, needs
to tackle with edge server placement and vehicular traffic
density. Therefore, we focus on evaluating the performance
of V2E. We reuse the setup described in section VIII-D.

The number of vehicles appearing in the area each hour
from 7am to 6pm (12 hours) increases from 7589 to 12948,
8920 to 10923, 3827 to 5596 in the selected areas of London,
Nottingham and York, respectively. We simulate the traffic
scenarios using Veins [39]. Veins is an open source frame-
work for running vehicular network simulations. It is based
on OMNeTpp, an event-based network simulator, and SUMO,
a road traffic simulator. Each edge server has a coverage
area of 3km, similar to its co-located macrocell. The public
dataset we used only contains vehicle counts per hour. To
add more granularity, we randomly generate traffic within
each area based on the corresponding data collected from real
dataset (see §VIII-D). The simulated traffic thus corresponds
to the real traffic at a macroscopic level. In the simulation,
all vehicles are regular vehicles without image processing

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 11

Fig. 10: Total busy time (London/Nottingham/York).

Fig. 11: Number of sent packets (London/Nottingham/York).

TABLE IV: Statistics in Figure 10 and Figure 11.

London Nottingham York

Driving time (99% CI) 464.39s (437.87-490.90) 291.08s (268.65-313.51) 290.87s (264.79-316.94)

Busy time (99% CI) 11.46s (10.27-12.65) 7.55s (6.59-8.51) 4.84s (4.27-5.42)

Sent packets(99% CI) 476.11 (449.40-502.82) 301.88 (279.45-324.32) 305.26 (276.44-334.08)

TABLE V: Minimum and maximum bandwidth requirements at vehicle, edge and cloud level for EAVVE during a day.

London Nottingham York

Vehicle (Min-Max) 528 bps - 500 kbps 528 bps - 500 kbps 528 bps - 500 kbps

Edge Server (Min-Max) 3.19 Mbps - 5.44 Mbps 3.42 Mbps - 5.44 Mbps 3.72 Mbps - 5.44 Mbps

Cloud Server (Min-Max) 402.26 Mbps - 687.61 Mbps 229.48 Mbps - 365.02 Mbps 127.44 Mbps - 186.05 Mbps

capabilities. In the road tests we let the system update at 10
images per second. At this frame rate, the display does not
provide a smooth transition of frames as the driver observes the
objects flickering on ARHUD and finds it hard to capture all
the information displayed. Therefore in the simulation, we let
each vehicle send captured images continuously to its nearest
edge server at 1 image per second.

E. Scalability
Since all the transmissions in vehicle-to-edge and edge-

to-vehicle are broadcast, there may be congestion on the
transmission channel. Depending on the vehicular traffic vol-
ume, this may generate busy times which affect the vehicle’s
communication to the edge server or vice versa. When a
vehicle finds a channel busy, it waits for a specified time
period and then tries to retransmit. In our simulations, we
did not specifically attempt to discover an optimal back-off
strategy and instead relied on the well-known exponential

back-off [40]. Figure 10 shows the total busy time experienced
by each vehicle. On the x-axis, we show all vehicles in the
simulation and the value on the y-axis shows the number
of seconds during which the vehicle experienced a busy
channel. Figure 11 shows the total number of packets sent
by each vehicle. The first 10 minutes of the simulation is
considered as a warm-up. We compute measurements after
these 10 minutes. The average vehicle speed in all scenarios
is under 10km/h, thus reflecting the lower bound of system
performance under extremely congested scenarios. Table IV
summarizes the statistics with 99% confidence interval and
shows that EAVVE scales well to different scenarios. For
instance, even though London and Nottingham tend to have
higher amounts of busy time than York due to more traffic, the
fraction of overall time a vehicle experiences a busy channel
remains reasonable. The channel is busy only a few percents
of the time (1.66%-2.59%). Moreover, the numbers of packets
sent align with the driving time periods. Vehicles do not spend

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 12

much time in the back-off state, thus proving that network
congestion is negligible. Therefore, EAVVE’s V2E strategy
scales well to central city areas with different densities of
traffic3.

Table V displays the minimum and maximum bandwidth
requirements for our demo application over the course of a
whole (simulated) day. During peak hours, a cloud server
would require more than 680 Mbps for a central city area (Lon-
don). When using V2E with edge servers, the load at the co-
located base station is around 5 Mbps, which is achievable
on LTE networks. V2V requires about 500 kbps per vehicle,
achievable on both LTE and DSRC. Overall, compared with
V2C, V2E can considerably relax the load at the bottleneck
(up to 99%) while providing computing capabilities to regular
vehicles.

In summary:
• Our edge server placement strategy leverages the base

station distribution and matches the demand with the
vehicular traffic patterns well.

• EAVVE improves the AR applications in vehicular net-
works by decreasing the transmission latency.

• EAVVE is scalable and performs well in different traffic
densities. It can also be combined with cloud solutions
to optimize costs.

IX. CONCLUSION

In this paper, we present EAVVE, an architectural frame-
work for vehicle-to-everything applications. Our system ex-
ploits the low latency of edge servers to provide real-time
emergency detection and notification. Leveraging edge servers
at various points in the network and future in-car processing
power, EAVVE is able to provide contextual information
sharing service for a variety of uses at different scales in time
and space based on the filtering and prioritization mechanisms.
To validate the concepts behind EAVVE, we build a prototype
application that we evaluate through real-world experiments.
This application connects vehicular vision with an ARHUD
for more comprehensive accident avoidance. In addition, using
real traffic data from different cities in the UK, we show that
EAVVE is able to scale up to realistic traffic demands and
that the required number of edge servers remains manageable,
even for large metropolis, e.g., 6.3 edge servers per square
kilometre in central London. Our road test results show that,
compared to cloud solutions, EAVVE decreases the latency
of AR applications in vehicular networks, that is, 42.6% and
78.7% for Connected Vehicle Vision compared with local
and remote cloud services. We also investigate the scalability
of EAVVE and show that it decreases latency in realistic
scenarios for different traffic densities. In summary, EAVVE
is an efficient V2X solution which improves the performance
by decreasing user latency and reducing network traffic.

3To accelerate simulation, we set the traffic update interval as 10s, which
leads to the difference of number of sent packets and driving time (some
packets sent by the vehicles after they drove outside the area were also
counted, which has a negligible effect).

APPENDIX A
DERIVATION OF EQ. (7)

Let queuei denote the queue of tasks in front of task i, ⌧i.
At any time, any edge server Ej has a queue of which the
length fulfills:

0 |queuei| rv, 8Vi 2 VEj (15)

where VEj denotes the set of vehicles offloading to edge
server Ej as defined in §IV-A. We then deduce

LE
⌧V =

rvX

i=1

eX

j=1

aij · L
Ej
⌧Vi

=
rvX

i=1

eX

j=1

aij · (T off
⌧Vi

+ T
back
⌧V + T

exec
⌧Vi

)

=
rvX

i=1

eX

j=1

aij · (
IV

Rul
Ej

+
OV

Rdl
E

+ CV +
X

v2queuei

CV)

=
rvX

i=1

eX

j=1

aij · (
IV |aj|

Bul
+

OV |aj|

Bdl
+ CV +

X

v2queuei

CV)

= �

rvX

i=1

eX

j=1

aij|aj|+ CV

rvX

i=1

eX

j=1

aij + CV

rvX

i=1

eX

j=1

aij|queuei|

= �

eX

j=1

|aj|
2 + CV

eX

j=1

|aj|+ CV

eX

j=1

(0 + 1 + 2 + ...+ |aj|)

=
eX

j=1

(
CV

2
+ �)|aj|

2 +
3CV

2
|aj|

= (
CV

2
+ �)

eX

j=1

|aj|
2 +

3CV

2

eX

j=1

|aj|

= (
CV

2
+ �)

eX

j=1

|aj|
2 +

3CV

2
rv,

(16)

where � =
IV

Bul
+

OV

Bdl
.

APPENDIX B
POLYNOMIAL PROOF OF EQ. (9)

To meet the constraint in eq. (13) (G2) while maximizing
the priorities of valid results (G1), we adapt the algorithm
of global early deadline first (EDF) to tackle the challenges.
In each edge server pool (defined in §VI), an edge server
functions as the leader and runs the scheduling algorithm. It
continuously collects the statistics from other edge servers in
the pool, including the waiting queue lengths and the priorities
of historical jobs. Meanwhile, it listens to the beacons sent
out by the vehicles and matches each vehicle’s identity with
the priorities of jobs using the UID contained in the beacon
and job packets. As such, the leader maintains the updates of
nearby vehicles and their historical job priorities. The central-
ized scheduler sorts all the jobs sent from serving vehicles
from high to low according to their priorities. Meanwhile,
it sorts the available threads of the edge servers from short
to long according to their queue lengths. It schedules the

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

jobs with the earliest deadline, each to a different thread
following the order of the thread sequence, and then the
jobs with the next earliest deadline and so on iteratively
until all threads are busy or all jobs are scheduled. The
algorithm schedules as many jobs with the highest priorities
as possible while balancing the offloading jobs among the
servers with the maximum effort. The algorithm described
above achieves an optimal scheduling solution with the time
complexity of O(n log n) utilizing a sorting algorithm such as
merge sort [41].

REFERENCES

[1] THEVERGE, “California green lights fully driverless cars
for testing on public roads,” 2018, accessed 2018-06-15.
[Online]. Available: https://www.theverge.com/2018/2/26/17054000/
self-driving-car-california-dmv-regulations

[2] CHINADAILY, “Shanghai allows autonomous tests,” 2018,
accessed 2018-06-15. [Online]. Available: http://www.chinadaily.com.
cn/business/motoring/2017-11/13/content 34469664.htm

[3] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless
communication protocols for enhancing highway traffic safety,” IEEE
communications magazine, vol. 44, no. 1, pp. 74–82, 2006.

[4] J. Gozálvez, M. Sepulcre, and R. Bauza, “Ieee 802.11 p vehicle to infras-
tructure communications in urban environments,” IEEE Communications
Magazine, vol. 50, no. 5, pp. 176–183, 2012.

[5] S. Rangarajan, M. Verma, A. Kannan, A. Sharma, and I. Schoen, “V2c:
a secure vehicle to cloud framework for virtualized and on-demand
service provisioning,” in Proceedings of the International Conference
on Advances in Computing, Communications and Informatics. ACM,
2012, pp. 148–154.

[6] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and
cellular network technologies for v2x communications: A survey,” IEEE
transactions on vehicular technology, vol. 65, no. 12, pp. 9457–9470,
2016.

[7] Y. Ren, F. Liu, Z. Liu, C. Wang, and Y. Ji, “Power control in d2d-based
vehicular communication networks,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 12, pp. 5547–5562, 2015.

[8] S. Guleng, C. Wu, Z. Liu, and X. Chen, “Edge-based v2x communica-
tions with big data intelligence,” IEEE Access, vol. 8, pp. 8603–8613,
2020.

[9] C. Wu, X. Chen, T. Yoshinaga, Y. Ji, and Y. Zhang, “Integrating licensed
and unlicensed spectrum in the internet of vehicles with mobile edge
computing,” IEEE Network, vol. 33, no. 4, pp. 48–53, July 2019.

[10] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge
computing: A survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, Feb 2018.

[11] J. Feng, Z. Liu, C. Wu, and Y. Ji, “Mobile edge computing for the
internet of vehicles: Offloading framework and job scheduling,” IEEE
vehicular technology magazine, vol. 14, no. 1, pp. 28–36, 2018.

[12] ——, “Ave: Autonomous vehicular edge computing framework with aco-
based scheduling,” IEEE Transactions on Vehicular Technology, vol. 66,
no. 12, pp. 10 660–10 675, 2017.

[13] X. Huang, R. Yu, J. Kang, Y. He, and Y. Zhang, “Exploring mobile edge
computing for 5g-enabled software defined vehicular networks,” IEEE
Wireless Communications, vol. 24, no. 6, pp. 55–63, 2017.

[14] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, and
G. Pavlou, “On uncoordinated service placement in edge-clouds,” in
Cloud Computing Technology and Science (CloudCom), 2017 IEEE
International Conference on. IEEE, 2017, pp. 41–48.

[15] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, Jan 2019.

[16] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. ZHANG, “Mobile-edge
computing for vehicular networks: A promising network paradigm with
predictive off-loading,” IEEE Vehicular Technology Magazine, vol. 12,
no. 2, pp. 36–44, June 2017.

[17] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid method
for minimizing service delay in edge cloud computing through vm
migration and transmission power control,” IEEE Transactions on Com-
puters, vol. 66, no. 5, pp. 810–819, 2016.

[18] T. G. Rodrigues, K. Suto, H. Nishiyama, N. Kato, and K. Temma,
“Cloudlets activation scheme for scalable mobile edge computing with
transmission power control and virtual machine migration,” IEEE Trans-
actions on Computers, vol. 67, no. 9, pp. 1287–1300, 2018.

[19] K. Wang, H. Yin, W. Quan, and G. Min, “Enabling collaborative edge
computing for software defined vehicular networks,” IEEE Network,
vol. 32, no. 5, pp. 112–117, 2018.

[20] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, “Future intelligent and
secure vehicular network toward 6g: Machine-learning approaches,”
Proceedings of the IEEE, 2019.

[21] C. Wu, Z. Liu, D. Zhang, T. Yoshinaga, and Y. Ji, “Spatial intelligence
toward trustworthy vehicular iot,” IEEE Communications Magazine,
vol. 56, no. 10, pp. 22–27, 2018.

[22] X. Chen, C. Wu, T. Chen, H. Zhang, Z. Liu, Y. Zhang, and M. Bennis,
“Age of information-aware radio resource management in vehicular
networks: A proactive deep reinforcement learning perspective,” IEEE
Transactions on Wireless Communications, 2020.

[23] S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao, “Vehicle-
to-everything (v2x) services supported by lte-based systems and 5g,”
IEEE Communications Standards Magazine, vol. 1, no. 2, pp. 70–76,
2017.

[24] H. Qiu, F. Ahmad, R. Govindan, M. Gruteser, F. Bai, and G. Kar,
“Augmented vehicular reality: Enabling extended vision for future
vehicles,” in Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications. ACM, 2017, pp. 67–72.

[25] H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up
augmented reality interfaces for crash warning systems,” in Proceedings
of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications. ACM, 2013, pp. 224–227.

[26] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju, “Arve: Aug-
mented reality applications in vehicle to edge networks,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications. ACM, 2018,
pp. 25–30.

[27] ——, “Enhanced augmented reality applications in vehicle-to-edge
networks,” in 2019 22nd Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN). IEEE, 2019, pp. 167–174.

[28] J. B. Kenney, “Dedicated short-range communications (dsrc) standards
in the united states,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–
1182, 2011.

[29] A. Papathanassiou and A. Khoryaev, “Cellular v2x as the essential
enabler of superior global connected transportation services,” IEEE 5G
Tech Focus, vol. 1, no. 2, pp. 1–2, 2017.

[30] SAE, “Dedicated short range communications (dsrc) message set
dictionary,” 2016. [Online]. Available: https://www.sae.org/standards/
content/j2735 201603/

[31] L. Le, R. Baldessari, P. Salvador, A. Festag, and W. Zhang, “Performance
evaluation of beacon congestion control algorithms for vanets,” in
2011 IEEE Global Telecommunications Conference-GLOBECOM 2011.
IEEE, 2011, pp. 1–6.

[32] F. Librino, M. E. Renda, and P. Santi, “Multihop beaconing forwarding
strategies in congested ieee 802.11 p vehicular networks,” IEEE Trans-
actions on Vehicular Technology, vol. 65, no. 9, pp. 7515–7528, 2015.

[33] H. P. Luong, M. Panda, H. L. Vu, and B. Q. Vo, “Beacon rate
optimization for vehicular safety applications in highway scenarios,”
IEEE Transactions on Vehicular Technology, vol. 67, no. 1, pp. 524–536,
2017.

[34] H. Song and H. S. Lee, “A survey on how to solve a decentralized
congestion control problem for periodic beacon broadcast in vehicular
safety communications,” in 2013 15th International Conference on
Advanced Communications Technology (ICACT). IEEE, 2013, pp. 649–
654.

[35] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Transactions on Wireless Communica-
tions, vol. 16, no. 8, pp. 4924–4938, 2017.

[36] C. Hoymann, “Mac layer concepts to support space division multiple
access in ofdm based ieee 802.16,” Wireless Personal Communications,
vol. 36, no. 4, pp. 363–385, 2006.

[37] J. M. Steele, The Cauchy-Schwarz master class: an introduction to the
art of mathematical inequalities. Cambridge University Press, 2004.

[38] DELL, “Poweredge c4130 rack server optimized for gpus and
co-processors,” 2018. [Online]. Available: https://www.dell.com/en-us/
work/shop/povw/poweredge-c4130

[39] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE
Transactions on Mobile Computing, vol. 10, no. 1, pp. 3–15, January
2011.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 14

[40] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet switching
for local computer networks,” Communications of the ACM, vol. 19,
no. 7, pp. 395–404, 1976.

[41] J. Katajainen and J. L. Träff, “A meticulous analysis of mergesort pro-
grams,” in Italian Conference on Algorithms and Complexity. Springer,

1997, pp. 217–228.

