
Multipath Computation Offloading for Mobile

Augmented Reality

Tristan BRAUD*, Pengyuan ZHOU
†

, Jussi KANGASHARJU
†

, and Pan HUI
∗†

*The Hong Kong University of Science and Technology - Hong Kong
†University of Helsinki - Finland

1Email: braudt@ust.hk, pengyuan.zhou@helsinki.fi, jussi.kangasharju@helsinki.fi, panhui@cse.ust.hk

Abstract—Mobile Augmented Reality (MAR) applications em-
ploy computationally demanding vision algorithms on resource-
limited devices. In parallel, communication networks are be-
coming more ubiquitous. Offloading to distant servers can thus
overcome the device limitations at the cost of network delays.
Multipath networking has been proposed to overcome network
limitations but it is not easily adaptable to edge computing
due to the server proximity and networking differences. In this
article, we extend the current mobile edge offloading models and
present a model for multi-server device-to-device, edge, and cloud
offloading. We then introduce a new task allocation algorithm
exploiting this model for MAR offloading. Finally, we evaluate
the allocation algorithm against naive multipath scheduling and
single path models through both a real-life experiment and
extensive simulations. In case of sub-optimal network conditions,
our model allows reducing the latency compared to single-path
offloading, and significantly decreases packet loss compared to
random task allocation. We also display the impact of the
variation of WiFi parameters on task completion. We finally
demonstrate the robustness of our system in case of network
instability. With only 70% WiFi availability, our system keeps
the excess latency below 9 ms. We finally evaluate the capabilities
of the upcoming 5G and 802.11ax.

I. INTRODUCTION

Mobile Augmented Reality (MAR) may be the most

computationally-intensive multimedia application, with strict

real-time constraints. A typical MAR application processes

large amounts of data, such as video flows, to display a virtual

layer on top of the physical world. These operations usually

run on mobile devices such as smartphones or smartglasses

that can only execute basic operations. The increase in the

performance and ubiquity of networks allows remote devices

and servers to execute larger portions of code. However, the

latency constraints of MAR applications (sometimes less than

20 ms [1]) are such that both the available bandwidth and

computing power on a single link is not sufficient for in-

time processing. Furthermore, wireless links characteristics

vary extremely in mobility conditions and may cause severe

service degradation or interruptions [2].

To get more insights about current wireless networks’

situation, we perform a simple experiment. Table I presents the

round-trip times (RTT) measured between a smartphone (LG

Nexus 5X) and several potential offloading devices: another

smartphone, connected using WiFi Direct (1 m distance), an

TABLE I: Average network round-trip time measured for

different offloading mechanisms.

D2D Edge Edge Alibaba Alibaba Google Google

WiFi D WiFi LTE WiFi LTE WiFi LTE

3.5 ms 3.7 ms 19.9 ms 5.5 ms 24.9 ms 42.2 ms 52.4 ms

Alibaba Cloud virtual machine through WiFi1 via eduroam2

and LTE, a Google Cloud virtual machine through WiFi and

LTE, as well as the first reachable server on each link to

emulate an Edge server. We average our measurements over

100 ICMP packets. The latency increases dramatically with

the distance between the client and the server. D2D shows

RTTs as low as 3.5 ms. The WiFi access point (AP) several

meters away adds 0.2 ms, and the Alibaba cloud server 2 ms.

As the Google Cloud server is located about 1,000 km away

to emulate a more distant cloud provider, latency is multiplied

by eight compared to the local Alibaba server. LTE also adds

noticeable latency relatively to WiFi: 16 ms for an Edge server

and 10 to 19 ms for a Cloud server.

In these conditions, maximizing in-time task completion in-

volves striking an intricate compromise between transmission-

related delays and computation time. To provide such perfor-

mance, MAR applications should not only dynamically offload

their computations in parallel over the set of available devices

but also exploit the multiple available links to minimize

transmission delays. For instance, a pair of smartglasses may

connect to a companion smartphone through WiFi Direct,

several Edge servers through WiFi and LTE, and even one or

several servers located in the cloud for heavier computations.

In this paper, we develop a scheduling algorithm for task

assignment over multiple links to an heterogeneous set of

servers composed of D2D companion devices, edge servers

and cloud servers connected through both WiFi and LTE. We

design a multipath, multiple server offloading mechanism to

provide more ressources for in-time MAR tasks completion.

Providing multiple resources in parallel also enables robust

fallback in case of link degradation or failure for uninter-

rupted MAR service. We develop a latency model taking

into consideration the various elements of the system and

1Unless specified otherwise, WiFi refers to the 802.11ac standard.
2https://www.eduroam.org/

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

978-1-7281-4657-7/20/$31.00 ©2020 IEEEAuthorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

perform optimizations to aggregate tasks based on their final

destination. We finally evaluate this algorithm through both

a real-life implementation and extensive simulations. After

comparing our solution to single-path and naive multi-path

task allocation, we analyze the impact of the access link and

the computing power of servers on the task distribution and the

in-time task completion. Finally, we evaluate the robustness

of our model to the instabilities, and expand our work to the

upcoming 5G and 802.11ax.

Our contributions can be summarized as follows:

1) A model of latency for multipath task offloading.

2) A scheduling algorithm to allocate tasks over multiple

wireless links to D2D, edge, and cloud servers.

3) A real-life implementation of a multipath, multi-server

mapping application that reduces latency by 10% com-

pared to the state-of-the-art.

4) An extensive set of simulations to characterize the sys-

tem. Our algorithm can withstand high bandwidth drops

and high latency variations without impacting tasks com-

pletion. In sub-optimal scenarios such as intermittent

connections, excess latences are kept below 9 ms.

II. RELATED WORKS

Computation offloading was one of the main motivation

for computer networks. In a memo considered as the first

documented evocation of computer networks (1963), J.C.R

Licklider justifies the need for device interconnection to enable

access to distant computing resources [3]. In recent years,

the explosion of the mobile device market shed new light

on these problems. Many cyber-foraging solutions for mobile

applications were developed, whether in the cloud [4], [5], the

edge of the network [6], or exploiting D2D communication [7].

Offloading frameworks enhance the capabilities of

hardware-limited mobile devices. These frameworks focus on

the data partitioning problem as well as its implementation in

mobile devices. MAUI [8] focuses on the energy consumption

of mobile devices to perform offloading. The authors

provide the data partitioning through a simple annotation

system. CloneCloud [9] modifies the application layer virtual

machine to automatically offload tasks to a remote server

with no intervention on the application. ThinkAir [10]

distributes offloaded functions in parallel among multiple

virtual machine images in the cloud. Cuckoo [11] is another

generic framework aiming at offloading computation with

minimal intervention from the application developer. Finally,

Breitbach et al. [12] decouple task scheduling from the data,

to accelerate edge computing. Several other studies were

directly focused on AR-specific offloading. Back in 2003,

Wagner et al proposed to offload AR tasks to a distant

machine [13]. In [14] Shi et al provide guidelines for MAR

applications on wearable devices. Finally, Overlay [15]

exploits cloud offloading for AR applications. However, these

works focus on pure cloud or edge computing, with eventual

distribution over several servers positioned at the same level

in the network. Moreover, they neglect LTE links due to

their high latency and variance. In this paper, we argue that

offloading to servers located at different levels of the network

has a significant impact on task completion, and that LTE

can be used as a fallback link in certain conditions.

In parallel to these generic and AR-specific cloud offloading

frameworks, new applications were developed, exploiting ei-

ther D2D or edge computing. D2D communication is defined

as the direct communication between two mobile devices [16],

[17]. D2D communication has been used for offloading over

Bluetooth [18], WiFi Direct [19], or even NFC [20]. Mobile

edge computing is considered as an extension of the current

cloud model, in which the servers are brought as close as

possible to the access point to reduce network-induced latency

and avoid congestion in the core network. However, this

causes problems as containers are usually large in size and

cumbersome to deploy [21]. This new paradigm attracted a

lot of attention, not only from academia [22], [23], [24],

but also the industry [25], [26]. We integrate both paradigms

in our model in association with cloud computing, as their

distinct characteristics can prove essential for enhancing the

experience of offloading applications.

More recently, studies started to focus on the networking

aspects of computation offloading, whether from an energy

perspective [27], to reduce data transmission [28], or opti-

mize mobility [29]. The networking challenges of AR have

been evoked in several articles. [30] proposes to combine

AR offloading and Information-Centric Networks to optimize

data transmission. [31] focuses on the application layer con-

straints, while [32] insists on transport layer optimizations.

EARVE considers the case of high mobility users such as ve-

hicules [33]. Finally, Cicconetti et al. [34] propose to distribute

edge computing over multiple servers. However, they only

consider a single access link. In this paper, we push forward

these studies by analyzing multipath offloading for MAR

among servers located at various levels of the network. We

acknowledge the variety of access links and server hardware

to propose a new task allocation model.

III. MODELING AN AR APPLICATION

In this section, we decompose a typical AR application

(such as Vuforia [35]) into a set of tasks and propose the

deadlines and computational/networking costs for each one

of them. We use the application model proposed by Verbe-

len et al [36], to which we add a new component – the

Feature Extractor – to further enhance tasks parallelization.

Let us consider a context-aware AR web browser [37]. Such

an application analyzes the surroundings of the user and

combines geographic location and temporal information with

computation-heavy image processing algorithms to display

the websites of specific locations in AR. Image processing

is the most substantial computation task, not only due to

the necessary raw computing power but also because of

the frequency of the process. We design this application as

presented Figure 1. This process starts with a video source

(here, a camera) capturing pictures. These pictures then go

through a Feature Extractor that isolates the main points of

interest for future processing. These features are then fed

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Tasks parameters.

Module Renderer Feature
extractor

Tracker Mapper Object
rec.

Task Tr,k Te Tt Tm To

Input Frame,
Metadata

Frame Feature
points
(FP)

FP,
World
Model

FP

Output Rendered
Objects

Feature
Points

Position World
Model

Object
Prop.

Ldata high variable medium medium medium
Lres high variable low medium low
Deadline τd,min variable 2τd,min 3τd,min 4τd,min

X low variable medium high high

❘❡�✁❡r❡r
Video

Source

Feature

extractor

Tracker Mapper
Object

Recogniser

Fig. 1: Main components of a typical MAR application.

into three interdependent components: the Mapper creates a

dynamic map of the 3D world, the Object Recognizer performs

fine-grained analysis of the picture to locate specific objects,

and the Tracker tracks the objects in subsequent frames. The

result of these three modules is then fed with the camera

images into the Renderer which is in charge of combining

them to display the virtual layer on top of the real world.

We break down the control flow of the application as a set of

N tasks {Tn}. Each task Tn(t) can be characterized by its data

size Ldata,n, the computation results size Lres,n, the number

of CPU cycles required to run the task Xn, and the deadline

τd,n, so that the total execution time τ(T (t)) is inferior to

τd,n. The task parameters for each component are presented

Table II. The Video Source gets the video frames from the

camera. This operation requires access to the hardware and

can only run on the device. Nowadays, most cameras operate

between 30 to 60 Frames per second; the minimum deadline

is thus: τd,min = 1
FPS

. At the other extremity, the Renderer

aggregates the results from the computation modules and

overlays them on top of the video frames. This operation

has to be performed every frame and as such is generally

not offloaded to a distant machine. However, in the case of

restricted hardware or heavy rendering, offloading through a

low latency network may be the only solution to meet the

deadline. We consider a set of k objects to render in parallel,

with deadline < τd,min. The Feature Extractor extracts feature

points from the camera frames. This component can have

different resolutions and deadlines, depending on the compo-

nent using the feature points as input. The Tracker requires

a lower resolution than the Mapper or the Object Recognizer

while having a shorter deadline. The Tracker tracks objects

on the frame. This module should process 15 to 20 FPS

TF TM

TOTF

TTTF

TR,1

TR,2

TR,N

Video

Frame

Fig. 2: Task dependency graph.

Internet

E1

E2

D1

C1

C2

C3

Fig. 3: Environment model: a pair of smartglasses is connected

to several computing units located at different extremities of

the network: device to device (Dk), edge (Ek) and cloud (Ck).

for seamless operation, so the overall deadline for feature

extraction and position estimation should be no higher than

2τd,min [36]. The Mapper creates a model of the world out

of the feature points extracted by the Feature Extractor. It

identifies new feature points and estimates their position in

space. The Mapper requires a higher image resolution than the

Tracker. However, it is less delay-constrained and can be called

every few frames. We estimate a deadline between 2τd,min and

4τd,min for feature extraction and world modeling. Finally, the

Object Recognizer identifies objects out of the feature points

and returns their position. Similarly to the Mapper, the object

recognizer does not require to be run in real-time and can be

called every 4τd,min to 8τd,min.

We extract the dependency graph in Figure 2. All tasks

are interdependent; however, we can split the dependency

graph for parallel processing [36]. As the world model and

the object list do not require an update every frame, tasks

Te1+Tr, Te2+Tm and Te3+To can be processed in parallel.

The only dependency is the combination of feature extraction

with another task. By keeping track of the previous instance’s

results, this model avoids passing on the excess latency.

IV. SYSTEM MODEL

We consider the scenario presented in Figure 3. A mobile

device (here smartglasses) executes a MAR application. Due

to the low processing power of smartglasses, computation

is offloaded to companion devices, edge servers and cloud

servers connected through WiFi Direct, WiFi and LTE.

A. Available resources

At a given time t, the client has a set of N tasks {Tn(t)}
to run, as defined Section III. The client connects to the

servers through a set of access links {Li}. We consider that

at any time t, only a subset of size I is available to the

user, depending on the actual availability of networks. Those

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

links are characterized by their delay τi(t) and bandwidth

Bi(t), variable over time. We consider the mobile network

to be down when LTE is not available, as UMTS can not

provide the minimum throughput and latency requirements for

MAR. The smartglasses connect to a set of offloading devices

through these networks. The set of devices includes J directly

connected companion devices {Dj}, K edge servers {Ek} at

the WiFi or LTE access point, and L cloud servers {Cl}. They

are characterized by their computing power CPU{j,k,l}(t). In

the case of cloud servers, we consider the connection to be

established through an aggregate link Laggr,i composed of one

of the access links belonging to {Li} and a backbone network

with additional latency τbackbone. We consider the access link

as the bottleneck of the network. The resulting link Laggr,i is

characterized by its latency τaggr,i(t) = τi(t) + τbackbone(t)
and bandwidth Baggr,i(t) = Bi(t).

B. Resource allocation

The execution time of task Tk(t) is a function of the original

transmission time τtr(t), the computation time on the server

τcomp(t) and τres the transmission time of the result:

τ(Tn(t)) = τtr,n(t)+τcomp,n(t+τtr)+τres,n(t+τtr+τcomp)
(1)

with:

τtr,n(t) =

τi(t) +
Ldata,n

Bi(t)
Edge or D2D

τi(t) + τbackbone(i) +
Ldata,n

Bi(t)
Cloud

(2)

τcomp,n(t) =
Xn

CPUj,k,l(t)
(3)

τres,n(t) =

τi(t) +
Lres,n

Bi(t)
Edge or D2D

τi(t) + τbackbone(i) +
Lres,n

Bi(t)
Cloud

(4)

We consider that the smartglasses can estimate the channel

conditions, as well as the available resources available on the

servers at all times. Offloading {Tn(t)} to a server comes

down to assigning resources so that:

τ(Tn(t)) < τd,n ∀n (5)

minΨ =
∑

n∈N

τ(Tn(t)) (6)

C. Multipath Cloud Offloading

Cloud servers are positioned further in the network than

edge servers and companion devices. As a result, transmitting

over WiFi or LTE results in a lower difference in overall

latency.Considering a set of access links {Li} connected to

a backbone network to a cloud server, multipath transmission

reduces overall network latency when:

∑

i∈I

τi(t) +
ki

Bi(t)
< min

i

(

τi(t) +
L

Bi(t)

)

(7)

Here, ki represents the amount of data transmitted over link

Li. In the most common case, only two links are present: LTE

and WiFi. The system becomes:

τWiFi(t) +
K

BWiFi(t)
+ τLTE(t) +

L−K

BLTE(t)

< min

(

τWiFi(t) +
K

BWiFi(t)
, τLTE(t) +

L−K

BLTE(t)

)

(8)

with optimal K found when τWiFi(t) +
K

BWiFi(t)
=

τLTE(t) +
L−K

BLTE(t)
:

K =

(

τWiFi − τLTE −
L

BLTE

)

·
BWiFiBLTE

BLTE −BWiFi

(9)

These principles can also be applied to edge servers, al-

though edge servers display such low latency that the inter-

connection between the two networks may introduce a larger

relative delay, reducing the impact of multipath transmission.

D. Mobility

Many MAR applications are used in mobility scenarios.

The user will thus experience regular disconnections and long

handovers due to his mobility. Tasks offloaded to the edge will

have to be transmitted through the backbone network to be

recovered through another link. We envision three scenarios:

(1) If completion prevails over latency, accept the additional

delay and transmit the results through the backbone network.

(2) In the case of latency-sensitive tasks, discard the task as

soon as the device leaves the access point (3) Flag critical tasks

at the application level to offload them to a reliable resource

(cloud server, companion device) in priority.

E. Data consistency

In distributed offloading, computation results may be trans-

mitted to the rest of the system for further computation. The

synchronization between a server i and the rest of the system

adds a delay τsync,i, the time to propagate data to the system.

τsync,i = max
j

(τtr,i→j) (10)

F. Sequential processing

Several tasks may be assigned to the same link or the same

server. We process tasks sequentially: only one task can be

transmitted or processed at a given time on the same resource.

Sequential processing permits fine-grained resource allocation

as it allows prioritizing tasks according to their deadlines.

Moreover, assigning a task to a given resource does not modify

the status of already assigned tasks. Therefore:

τcomp,n(t) = τsched,n +
Xn

CPUj,k,l(t)
(11)

τtr,n(t) = τwait,n + τi(t) +
Ldata,n

Bi(t)
(12)

τsched,n being the time to wait for the task to be scheduled on

the server, and τwait,n the delay before transmission on the

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

link. If the task Tn(t) has to be executed sequentially on the

server, transmission of the task can be delayed by an additional

τwait,n as long as t+ τtr,n ≤ t+ τsched, n− 1.

G. Tasks Dependencies

The simplest task model is the data-partition model, in

which we only consider a pool of independent tasks at a given

time. However, most AR systems cannot be decomposed into

independent tasks, as most components require the output of

a previous component as an input, as shown Section III. We

consider three main tasks dependencies models. For a set of

N interdependent tasks, the dependencies can either be linear,

parallel or a combination of both. When a set of tasks are

linearly dependent, if we consider that each task result has to

be reported to the smartglasses before executing another, the

total execution time is:

Ψ =
∑

n∈N

τ(Tn(t)) (13)

In the case of parallel dependencies where the input of task

TN depends on the output of parallel tasks T1 to TN−1. The

execution time of N − 1 tasks dispatched over Nres servers

is therefore constrained by the following equation:

Ψ < τ(T1(t)) +
N − 2

Nres

max(τ(Tn(t))) + τ(TN (t)) (14)

n ∈ [2, N − 1]
Finally, tasks can show more intricate interdependencies.

We can resolve this kind of topology by aggregating parallel

or linearly dependent tasks in nested clusters, with an overall

latency of τcluster, until the full system turns into a linear or

parallel combination of clusters.

H. Optimizations

Interdependent tasks introduce new constraints in the sys-

tem, but also provide new opportunities for optimization. A set

of N linearly dependent tasks can be considered as a single

task of deadline
∑

n∈N τd,n, transmitted on the same link

and executed on the same server. The execution time of this

set can be reduced by transmitting all tasks sequentially and

executing them as soon as they are received and the previous

task completed. The overall delay for this set of tasks becomes:

ψ = τi(t)+
∑

n∈[1,N]

max

(

Ldata,n

Bi(t)
, τcomp,n−1

)

+τcomp,n+τres,N

(15)

Similarly, for parallel dependencies, all tasks may be transmit-

ted right after task T1, reducing the total time to:

Ψ < τ(T1(t))+
N − 2

Nres

max
n

(τcomp,n)+max
n

(τres,n)+τ(TN (t))

(16)

n ∈ [2, N−1], assuming that τtr,n < τ(T1(t)), ∀n ∈ [2, N−1]

V. SCHEDULING ALGORITHM

In this section, we propose a scheduling algorithm to

allocated tasks over the set of available links and servers. We

first introduce a system for independent tasks, then discuss the

implications of tasks with linear and parallel dependencies.

Algorithm 1 Scheduling algorithm.

Input: Network bandwidth {Bi(t)}, latency {τi(t)}, server

available capacity {CPU(t)j}, set of tasks Tn(t), set of

link/server combinations (Li, Dj , Ek, Cl)
1: for task in T.sort(τd) do

2: for link,server in combination do

3: compute τlink,server
4: end for

5: allocate task Tn to link/server with lowest τlink,server
6: remove Tn from T

7: end for

Output: Task allocation

A. Independent tasks

We consider sequential task allocation as it allows greater

flexibility (see Section IV-F). We consider several metrics:

• {τn} the set of task completion times over all available

servers and links.

• αmin = min(τ)
τd

We assume that the set of links and servers is small enough

to compute {τ} for all tasks in a reasonable amount of time.

In our use case represented in Figure 3, the system features

three links, one companion device, two edges servers and

three cloud servers for a total of 9 possible combinations. We

propose a simple two-steps algorithm to solve the resource

allocation problem. While all tasks have not been assigned,

we select the task with the closest deadline τd. We then

compute the set of {τ link, server} corresponding to all

possible link/server combination and allocate the task to the

combination with the lowest αlink,server. We summarize this

method in Algorithm 1. This conservative algorithm aims at

maximizing the number of tasks that can be processed in-time.

Therefore, tasks that can complete in the least amount of time

relative to their deadline are assigned first.

B. Interdependent tasks

In this section, we consider interdependent tasks. For more

general relationships, the dependency graph can be decom-

posed into several linear or parallel clusters.

1) Linear dependency: : A set of N linearly dependent tasks

can be considered a single task of deadline τd = τd,N . The

task execution time of the aggregate can be computed using

Equations 11 and 12. The aggregate is then assigned to a

single server. If the tasks have independent deadlines without

a constraint on the overall deadline or if we can estimate each

deadline as a function of the overall deadline (for instance,

τn =
τd

Xn

∑

n′∈N Xn′), we can assign the first task and

schedule the following tasks after it completes, recomputing

the deadlines according to the actual completion time.

2) Parallel Dependency: : The set of parallel tasks can be

considered as a cluster of independent tasks with deadline

τd = min({τd,n}) and response time τ = max(τn). Tasks

in this cluster can be allocated as independent tasks, using the

redefined deadline and completion time for task assignment.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Abrash, “Latency – the sine qua non of ar and vr.” Accessed 23-02-
2017.

[2] T. Braud, T. Kämäräinen, M. Siekkinen, and P. Hui, “Multi-carrier
measurement study of mobile network latency: The tale of hong kong
and helsinki,” in 15th International Conference on Mobile Ad-hoc and

Sensor Networks, December 2019.
[3] J. Licklider, “Memorandum for : Members and affiliates of the inter-

galactic computer network,” 1963.
[4] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of computation

offloading for mobile systems,” Mob. Netw. Appl., vol. 18, pp. 129–140,
Feb. 2013.

[5] M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on
distributed application processing frameworks in smart mobile devices
for mobile cloud computing,” IEEE Communications Surveys Tutorials,
vol. 15, pp. 1294–1313, Third 2013.

[6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” CoRR, vol. abs/1702.05309, 2017.

[7] S. Yu, R. Langar, and X. Wang, “A d2d-multicast based computation
offloading framework for interactive applications,” in 2016 IEEE Global

Communications Conference (GLOBECOM), pp. 1–6, Dec 2016.
[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on

Mobile Systems, Applications, and Services, MobiSys ’10, (New York,
NY, USA), pp. 49–62, ACM, 2010.

[9] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of

the Sixth Conference on Computer Systems, EuroSys ’11, (New York,
NY, USA), pp. 301–314, ACM, 2011.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dy-
namic resource allocation and parallel execution in the cloud for mobile
code offloading,” in 2012 Proceedings IEEE INFOCOM, pp. 945–953,
March 2012.

[11] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: A Computation

Offloading Framework for Smartphones, pp. 59–79. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[12] M. Breitbach, D. Schäfer, J. Edinger, and C. Becker, “Context-aware
data and task placement in edge computing environments,” in 2019 IEEE

International Conference on Pervasive Computing and Communications

(PerCom, pp. 1–10, March 2019.
[13] D. Wagner and D. Schmalstieg, First steps towards handheld augmented

reality. IEEE, 2003.
[14] B. Shi, J. Yang, Z. Huang, and P. Hui, “Offloading guidelines for

augmented reality applications on wearable devices,” in Proceedings of

the 23rd ACM International Conference on Multimedia, MM ’15, (New
York, NY, USA), pp. 1271–1274, ACM, 2015.

[15] P. Jain, J. Manweiler, and R. Roy Choudhury, “Overlay: Practical mobile
augmented reality,” in Proceedings of the 13th Annual International

Conference on Mobile Systems, Applications, and Services, MobiSys
’15, (New York, NY, USA), pp. 331–344, ACM, 2015.

[16] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” IEEE Communications Surveys

Tutorials, vol. 16, pp. 1801–1819, Fourthquarter 2014.
[17] A. Fahim, A. Mtibaa, and K. A. Harras, “Making the case for com-

putational offloading in mobile device clouds,” in Proceedings of the

19th Annual International Conference on Mobile Computing &

Networking, MobiCom ’13, (New York, NY, USA), pp. 203–205, ACM,
2013.

[18] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and A. Srini-
vasan, “Mobile data offloading through opportunistic communications
and social participation,” IEEE Transactions on Mobile Computing,
vol. 11, pp. 821–834, May 2012.

[19] D. Chatzopoulos, K. Sucipto, S. Kosta, and P. Hui, “Video compression
in the neighborhood: An opportunistic approach,” in 2016 IEEE Inter-

national Conference on Communications (ICC), pp. 1–6, May 2016.

[21] L. Civolani, G. Pierre, and P. Bellavista, “FogDocker: Start Container
Now, Fetch Image Later,” in UCC 2019 - 12th IEEE/ACM International

Conference on Utility and Cloud Computing, (Auckland, New Zealand),
pp. 51–59, ACM, Dec. 2019.

[20] K. Sucipto, D. Chatzopoulos, S. Kosta, and P. Hui, “Keep your nice
friends close, but your rich friends closer – computation offloading using
nfc,” in 2017 Proceedings IEEE INFOCOM, 2017.

[22] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE

Journal on Selected Areas in Communications, vol. 34, pp. 3590–3605,
Dec 2016.

[23] S. Barbarossa, S. Sardellitti, and P. D. Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5g heterogeneous
networks,” IEEE Signal Processing Magazine, vol. 31, pp. 45–55, Nov
2014.

[24] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, pp. 14–23, Oct 2009.

[25] “Mobile-edge computing-introductory technical white paper.” Accessed
29-07-2017.

[26] Intel, “Real-world impact of mobile edge computing (mec).” Accessed
29-07-2017.

[27] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,” in IEEE

INFOCOM 2016 - The 35th Annual IEEE International Conference on

Computer Communications, pp. 1–9, April 2016.

[28] Y. Li and W. Gao, “Code offload with least context migration in the
mobile cloud,” in 2015 IEEE Conference on Computer Communications

(INFOCOM), pp. 1876–1884, April 2015.

[29] K. Wang, M. Shen, J. Cho, A. Banerjee, J. Van der Merwe, and K. Webb,
“Mobiscud: A fast moving personal cloud in the mobile network,” in
Proceedings of the 5th Workshop on All Things Cellular: Operations,

Applications and Challenges, AllThingsCellular ’15, (New York, NY,
USA), pp. 19–24, ACM, 2015.

[30] C. Westphal, “Challenges in networking to support augmented reality
and virtual reality,” 2016.

[31] W. Zhang, B. Han, and P. Hui, “On the networking challenges of mobile
augmented reality,” 2017.

[32] T. Braud, F. H. Bijarbooneh, D. Chatzopoulos, and P. Hui, “Future
networking challenges: The case of mobile augmented reality,” in 2017

IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), pp. 1796–1807, June 2017.

[33] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju, “Enhanced
augmented reality applications in vehicle-to-edge networks,” in 2019

22nd Conference on Innovation in Clouds, Internet and Networks and

Workshops (ICIN), pp. 167–174, Feb 2019.

[34] C. Cicconetti, M. Conti, and A. Passarella, “Low-latency distributed
computation offloading for pervasive environments,” in 2019 IEEE

International Conference on Pervasive Computing and Communications

(PerCom, pp. 1–10, March 2019.

[35] “Vuforia.” https://vuforia.com/. Accessed: 2017-07-30.

[36] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in Proceedings of the Third

ACM Workshop on Mobile Cloud Computing and Services, MCS ’12,
(New York, NY, USA), pp. 29–36, ACM, 2012.

[37] K. Y. Lam, L. Hang Lee, T. Braud, and P. Hui, “M2a: A framework for
visualizing information from mobile web to mobile augmented reality,”
in 2019 IEEE International Conference on Pervasive Computing and

Communications (PerCom, pp. 1–10, March 2019.

[38] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions

on Robotics, vol. 33, pp. 1255–1262, Oct 2017.

[39] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
CoRR, vol. abs/1804.02767, 2018.

[40] M. Turner, “Wi-fi 6 explained: The next generation of wi-fi,” sep 2019.

[41] I. Fogg, “5g users now experience max download speeds over 1000
mbps in 4 countries,” sep 2019.

[42] N. Alliance, “5g white paper,” Next generation mobile networks, white

paper, 2015.

2020 IEEE International Conference on Pervasive Computing and Communications (PerCom)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on October 20,2021 at 02:43:04 UTC from IEEE Xplore. Restrictions apply.

