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Wearable computers engage in percutaneous interactions with human users and revolutionize the way of learning human
activities. Due to rising privacy concerns, federated learning has been recently proposed to train wearable data with privacy
preservation collaboratively. However, under the state-of-the-art (SOTA) schemes, user profiles on wearable devices of
inferior networking conditions are regarded as ‘left out’. Such schemes suffer from three fundamental limitations: (1) the
widely adopted network-capacity-based client selection leads to biased training; (2) the aggregation has low communication
efficiency; (3) users lack convenient channels for providing feedback on wearable devices.

Therefore, this paper proposes a Fair and Communication-efficient Federated Learning scheme, namely FCFL. FCFL
is a full-stack learning system specifically designed for wearable computers, improving the SOTA performance in terms
of communication efficiency, fairness, personalization, and user experience. To this end, we design a technique named
ThrowRightAway (TRA) to loose the network capacity constraints. Clients with poor networks are allowed to be selected
as participators to improve the representation and guarantee the model’s fairness. Remarkably, we propose Movement
Aware Federated Learning (MAFL) to aggregate only the model updates with top contributions to the global model for the
sake of communication efficiency. Accordingly, we implemented an FCFL-supported prototype as a sports application on
smartwatches. Our comprehensive evaluation demonstrated that FCFL is a communication efficient scheme significantly
reducing uploaded data by up to 29.77%, with a prominent feature of guaranteeing enhanced fairness up to 65.07%. Also, FCFL
achieves robust personalization performance (i.e., 20% improvements of global model accuracy) in the face of packet loss
below a certain fraction (10%–30%). A follow-up user survey shows that our FCFL-supported prototypical system on wearable
devices significantly reduces users’ workload.
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1 INTRODUCTION
With the popularization of mobile and wearable devices, intelligent activity learning applications have been
prominently used by consumers and generate more user data. Despite the potential to act as effective data sources
for machine learning tasks, the training of machine learning models for mobile and wearable applications usually
demands data far more than each device collects. Currently, aggregating user data in the cloud for extensive data
analysis is the de facto solution. However, privacy concerns have spawned a series of policies that limit data
collection and storage only to consumer-consented and necessary usage [32]. For example, most data collected
from mobiles and wearables are subject to data protection regulations such as European Commission’s General
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Data Protection Regulation (GDPR) [12] and Consumer Privacy Act (CCPA) in USA [9]. Such regulations make it
harder to aggregate user data for the sake of large-scale data analysis.

In the face of the above privacy-preserving challenges, federated learning rises as a new distributed paradigm
where multiple clients collaboratively train a model without revealing private data while naturally complying
with the GDPR. Based on whether the clients are different organizations or a large number of mobile devices,
federated learning is divided into cross-silo and cross-device. Mobile and wearable devices fit the cross-device
federated learning structure and encounter several unresolved issues.
First, communication is seen as a major bottleneck as cross-device federated learning systems rely on unstable

wireless communication networks, which is even more severe for wearables due to lower communication
bandwidth and device capacity than most other mobile devices. As a result, most related approaches propose to
select clients based on network capacities [6, 38, 45], leading to a significant portion of user devices (24%) being
‘left out’ or, equivalently, never-represented (detail explanation in Section 3). However, such proposals inevitably
cause data shifts during client selection. Until very recently, researchers have proposed fairness schemes [31, 37]
focusing on the data shift after client selection and during model updates aggregation. Unfortunately, the data shift
occurring at the beginning of client selection has been overlooked. Consequently, the fairness and personalization
performance of federated learning is impacted.
Second, the selected clients do not necessarily provide considerable contributions to the global model conver-

gence. For instance, some clients may have very limited weight changes (e.g., 0) and thus waste the uploading
quota for aggregation. There are a few related approaches. For example, as proposed by [41], the contribution
of each local update is relevant with its movement1, which can be used as a reference to select valuable up-
dates. Based on movement, we define a new term update relevance and a lightweight algorithm to improve the
communication and aggregation efficiency.
Third, a few existing federated learning solutions for wearables [8, 10] have largely overlooked the user

experience perspective. For instance, how to reduce the demand for user operations and allow users to give
feedback on wrong inference results conveniently. In the end, user experience is the most straightforward factor
for the successful promotion of such techniques, and, eventually, demonstrates a crucial role in the system design
of wearable computing.

In this paper, we propose Fair and Communication-efficient Federated Learning (FCFL) to collaboratively train
models over wearable devices. Concretely, we make the following contributions in this work:
(1) Re-examine ‘never-represented’ devices. We conducted a trace-driven analysis and learned that the network

limit challenge might be overstated in some aspects. Meanwhile, we identify an overlooked bias caused
by network-capacity-based client selection. We further analyze its impact on the performances of the
state-of-the-art (SOTA) algorithms in the fields of accuracy, fairness, and personalization (Section 3).

(2) Communication efficiency (uploaded data) and fairness.We explore the fair and communication-efficient
federated learning (FCFL) by using ThrowRightAway (TRA). TRA ignores and replaces some lost data
with light-weight recovery to avoid straggling retransmissions. Meanwhile, TRA lifts the network capacity
threshold, thus enabling fully fair client selection regardless of networking conditions (Section 4.2). As
a result, the ‘never-presented’ clients and their contributions are sufficiently addressed by FCFL. We
further propose Movement Aware Federated Learning (MAFL), an algorithm in FCFL, to spot the most
important updates out of the participators, thus further improving the communication and aggregation
efficiency (Section 4.3).

(3) Performance. The empirical evaluation results show that, compared with the SOTA work, i.e., Oort [29]
and CMFL [43], FCFL improves the communication efficiency (i.e., the uploaded data) by up to 29.77% and
27.93% in lossy networks, respectively. Meanwhile, FCFL outperforms Oort in fairness by up to 65.07%.

1Movement refers to how fast a weight is moving away from 0.
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Fig. 1. Network-capacity based schemes (left) select clients with better network conditions to avoid packet loss and stragglers
during aggregation. However, biased training is caused due to certain clients with poor networking conditions are ‘never-
represented ’ (Details available in Section 3). Our proposal (right) allows clients participate in the aggregation regardless of
network conditions.

FCFL improves the fairness and personalization performance by up to 45.07% and 20%, compared with
q-FedAvg [31] and pFedMe [14], respectively (Section 5).We also design and implement a prototypical sports-
monitoring system following the architecture shown in Figure 5, consisting of smartwatches, smartphones,
and Linux server(s). The activity recognition model on the smartwatch trains with the prototypical system,
resulting in > 97% accuracy. Our user evaluation shows that users with the FCFL-supported prototype
significantly reflect reduced physical workload and efforts and become less frustrated (Appendix A).

2 BACKGROUND AND MOTIVATION
In this section, we describe the background and aforementioned drawbacks in current solutions, and state the
motivations of our work.

2.1 Fair Client Selection
As noted by Bonawitz et al. [6], the FedAvg [35] model aggregation protocol’s assumption about equitable
participation of all devices is not the case in practice. Consequently, fairness [4, 18, 34] is impacted and results in
bias. For instance, for better communication efficiency, cross-device federated learning systems commonly use
transmission speed as a criterion for mobile client selection to avoid packet error and client drop (Figure 1 left).
In such cases, the clients with more packet errors and drops are unlikely taken into model aggregation. Even
worse, users consistently having worsened networking conditions may never be represented in the model aggregation
(being ‘left out’), resulting in a biased model. We do note that stochastic delay and network congestion during
peak hours could generate temporary bad-network users following non-biased distributions. However, users
paying for worse network service due to financial constraints also play an important role in different network
conditions and result in biased client selection.

Mimicking common issues in model training, i.e. over-fitting and under-fitting, we summarize common factors
for bias in federated learning as: (1) over-represented, (2) under-represented, (3) never-represented. They refer to
the clients that are (1) selected too frequently, (2) selected too infrequently, (3) never/barely selected. Although
recent approaches [31, 37] partly solve (1) and (2) by mitigating bias during the training procedure, they can
not solve bias caused by unfair client selection in (3), as also noted by the authors of in [37]. As a result, users
whose patterns share less similarity with the good-networking users (who get selected the most in network-
capacity-based client selection) experience lower model accuracy due to biased learning. Consequently, their
personalization performance also suffers.
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2.2 Aggregation Efficiency
Capacity-driven client selection, be it network-capacity, computation-capacity, or any others, does not consider
the contribution of each client’s updates to the global model convergence. For instance, some clients selected
more than the others have similar models with the global model, and thus their updates provide only limited
contributions. Although the selected participators can fulfill the configuration requirements, e.g., local training
delay and update uploading delay, it is hard to guarantee that their updates make a meaningful contribution to
the global model convergence. When meaningless updates consume the aggregation quota, it is unavoidably
that the communication efficiency gets negatively impacted, and user devices consume more-than-necessary
networking resource and energy for the training. Thus, we have to search for an efficient scheme of aggregation
and model updating that represents all the clients.

2.3 User-centered Systems and Inspirations
Until recently, most activity monitoring apps on commercial wearable platforms require users to select the
activity type before starting manually. A few exceptions, such as Apple Watch and Samsung Galaxy Watch,
provide automatic workout detection functions but require a few minutes for the warm-up stage of automatic
detection [3, 40].
More importantly, none of the existing wearable learning solutions (including both federated learning and

traditional cloud computing) provide a real-time user feedback mechanism to correct the wrong detection result
for better learning performance. Consequently, each client’s model has its performance left to the mercy of the
global training with limited personalization potential. We pinpoint the below issues that hindered the owner of
wearable devices from personalized user experiences and further describe the latest solutions for such issues.

Lossy aggregation. A variety of techniques attempt to ease the gap between demanded and actual network
capacities by intentionally “sacrificing” some information and hence achieving low latency and communication
efficiency. For instance, some related works have proposed to use lossy compression to reduce the transferred
data volume. The authors in [15, 25] perform lossy compression on the model updates using both structured
and sketched updates. The main idea is to learn from a restricted space or upload a compressed model. Authors
in [7] focus on the server-to-client communication and similarly applies a lossy compression scheme with less
frequent updates. The authors in [44] tapped into the loss tolerance potential in distributed machine learning,
which shows its bounded loss tolerance via evaluations.

Movement relevance. Recently, researchers have proposed to use “movement” to assess the importance of a
weight update for model fine-tuning [41]. The authors in [43] propose to use the same-sign parameters in the
update to select the local updates which have the most significant effects on the model aggregation. We think
the two schemes, with proper adaption, can be integrated as a movement-based algorithm to select important
updates during aggregation in federated learning.

User feedback. After reviewing a number of commercial wearable activity monitoring apps, we discover that
they commonly lack of a crucial feature, i.e., real-time user feedback on activity recognition results. Due to
different body shapes and movement habits, activity recognition may never become perfectly tailored for every
individual, regarded as the grand challenge of achieving highly personalized services (i.e., hyper-personalization).
Even after a long training period over a huge amount of data, such apps sometimes generate incorrect recognition
results. Therefore, user feedback mechanisms for model-tuning are crucial for improving user experience. The
most current apps can provide is to allow users to select the correct activities afterwards manually. Although the
current apps, generally speaking, offer users to adjust the (mis-)recognized activity afterward, many users may
forget to make corrections or skip such manual corrections due to burdensome tap-and-swipe operations on
client UIs.
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These works inspire us to explore the communication efficiency and loss tolerance of cross-device federated
learning. The differences between our work and the works mentioned above are fourfold:

(1) We propose a loss-tolerant scheme (TRA) to address communication efficiency and guarantee fairness
during client selection.

(2) We propose a new definition of “update relevance” and a lightweight algorithm (MAFL) to select the most
important local updates. As such, FCFL can further improve communication and aggregation efficiency.

(3) As a standalone solution, FCFL improves communication efficiency and loss tolerance. Meanwhile, FCFL also
guarantees fairness and personalization. Remarkably, FCFL can be easily integrated with SOTA algorithms
for performance improvements.

(4) FCFL enables users to conveniently operate with smart wearables and provide feedback for improved user
experience.

Note: The network threshold for selection can be bandwidth, transmission speed, packet loss, or hybrids.
In this work, we convey different network constraints to packet loss.

3 PROBLEM STUDY
In this section, we analyze the problems mentioned in Section 2.2 in detail. First, we learn the disparate networking
conditions by analyzing a real-world dataset and discover its biased impact on client selection. Then we show
how the SOTA approaches regarding fairness and personalization for federated learning suffer from the data
shift due to the biased selection.

3.1 Users Being ‘Left Out’ (‘never-represented ’) due to Mobile Network Conditions
Transmission speed is an important metric during client selection and has been adopted by both industrial and
academic works [38, 39]. For instance, Openmined [39] sets 2 Mbps as the default upload speed threshold for client
selection. Therefore, it is worth looking at user network capacity in real life. We use a mobile broadband dataset
provided by FCC [11] to study the mobile network conditions in reality. We select data from the “Download
speed and upload speed” category in the 2019 Q1 & Q2 collection. The data is measured via Android and iOS
applications and contains uploading traces from thousands of volunteered participants, recording the average
received packets, lost packets, and throughput. After processing the trace according to unique identifiers, the
cumulative distributions of the average packet loss ratio and upload speed are shown in Figure 2. It shows that
the majority of the users have sufficient network capacities required by common federated learning systems (> 2
Mbps). However, the upload speeds vary tremendously across users. For instance, 24% of the users have upload
speed < 2 Mbps while 51% of the users have upload speed > 8 Mbps. According to current common standard (e.g.,
> 2 Mbps according to [39]), 24% of the users fail to meet the network threshold thus would be never-represented
in the model aggregation. Consequently, users who are never-represented and share fewer data similarities with
the mainstream would experience lower model accuracies. They would also encounter worsened personalization
performance since the aggregated model needs more fine-tuning to learn their datasets.

Takeaway: The trace-driven analysis shows that the network conditions of most mobile clients are not so
“limited” and “challenging” as most related works assumed. However, the tremendously varied upload
speeds may indeed cause biased client selection in network-capacity-based settings.
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Fig. 2. Network conditions analysis result. 10% of the users experienced > 10% packet loss ratio. 24% of the users experienced
< 2 Mbps upload speed, regarded as ‘never-represented ’.

3.2 Impacts
Following the takeaway in Section 3.1, we investigate the impact of biased selection caused by network-capacity-
based settings. We define the essential terms as follows.

Definition 1 (Eligible client). An eligible client is one that meets the required network threshold to participate
in federated learning aggregation.

Definition 2 (Eligible ratio). Eligible ratio is the proportion of the eligible clients out of all the clients.

Only the eligible clients within the eligible ratio may be selected for aggregation in network-capacity-based
settings. As some users have lower network capacities than the threshold (Figure 2), the system only can choose
eligible clients for aggregation and generate bias and result in models with discrimination. For the completeness
of the work, we adjust the eligible ratios between 100%, 90%, 80%, and 70% in the evaluation of the paper. More
specifically, we investigate the impacts on accuracy, fairness, and personalization, respectively. We use the same
datasets2 for both bottleneck analysis and evaluation for consistency.

Accuracy. First, we examine the impact of biased selection on accuracy. We target at the prevailing and common
FedAvg, which evenly averages the selected clients’ models. As Figure 3 shows, smaller eligible ratios have higher
impacts on the model performance. The final model accuracy of FedAvg with eligible ratios of 100%, 90%, 80%,
and 70%, are 83.52%, 75.60%, 64.10%, and 62.60%. For the users in Figure 2, the model accuracy would decrease
around 10% if using 2 Mbps as the selection threshold.

Fairness. As noted in Section 2.1, existing schemes improve fairness for over-represented and under-represented
clients, but fail to serve the never-represented clients. To validate this argument, we reproduce the evaluations of
q-FedAvg with a 70% eligible ratio to get the bottleneck performance. We adjust the distribution of training sample
data on each device from i.i.d (independent and identically distributed [21]) to non-i.i.d to comprehensively test
the degradation of both accuracy and fairness performance caused by biased client selection. Table 1 shows that
the performances of q-FedAvg are impacted due to biased selection with both i.i.d and non-i.i.d data distributions.
Non.i.i.d data presents larger performance degradation than i.i.d data in terms of both accuracy and fairness.

Personalization. Some of the existing approaches train a new deep neural network (transfer learning) [10],
with loss function measuring the heterogeneity for local and global models, other than the one for the task. In
2In the rest of the paper, we use the synthetic datasets generated following the process described in the experiment detail of q-FedAvg [31],
where 𝛼 and 𝛽 allow the precise manipulation of the degree of heterogeneity. Increasing the values of 𝛼 and 𝛽 result in higher statistical
heterogeneity.
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Fig. 3. Impact of biased client selection on the accuracy performance of the prevailing FedAvg with a Synthetic(0.5,0.5)
dataset (Footnote 2).

Table 1. Impact of biased client selection on the fairness performance of q-FedAvg [31]. Threshold (TH) indicates whether
considering the 70% eligible ratio (see Definition 2) during client selection. The 4th column of Best/Worst 10% indicates the
top 10% best/worst accuracies.

Dataset TH Average Best/Worst 10% Variance
Synthetic
(i.i.d)

72.47% 91.85% / 43.19% 179
✓ 68.67% 94.25% / 36.30% 245

Synthetic
(0.5,0.5)

66.21% 98.30% / 22.51% 536
✓ 52.81% 99.79% / 0 1350

Synthetic
(1,1)

64.17% 100% / 7.67% 937
✓ 55.24% 100% / 0 1439

Synthetic
(2,2)

75% 100% / 20.24% 651
✓ 62% 100% / 0 1584

resource-intensive cases, transfer learning reduces the model size so that a device can simultaneously hold two
transferable models. Still, its advantage over a single larger model requires further exploration. Per-FedAvg [17]
looks for an initial shared model that clients can quickly adapt via a few gradient descents concerning their
data. pFedMe [14] adds constraints into the loss function of global training and shows the outperformance of
Per-FedAvg. Therefore, we use pFedMe as the target to examine the impact of biased selection on personalization
performance.

As shown in Figure 4, pFedMe offers resilient performance in its personalized model. However, the performance
of the global model presents considerable degradation in lower eligible ratios. We note that pFedMe achieves
robustness on personalized model performance via more computation and power cost. Unlike most approaches
selecting clients before local training, pFedMe lets all clients do local training and then select some to upload. As
such, its performance of personalized model is less depending on the convergence of the global model, while
costing more computation and power of the client devices as a tradeoff. For example, applying an eligible ratio to
Per-FedAvg gets degraded performance as shown in Figure 4b.

Takeaway: Network-capacity-based solutions cause biased client selection, which severely deteriorates
the performance of accuracy, fairness, and personalization. Therefore, an alternative communication
efficient scheme allowing fair participation is demanded.
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Fig. 4. The impact of biased client selection on personalized and global performance of pFedMe (a) and Per-Fedavg (b).
Label p refers to the average local accuracy after personalization while G refers to the global accuracy. The dataset is
Synthetic(0.5,0.5) (Footnote 2). We use the fine-tuned hyperparameters of Table. 1 in the paper of pFedMe [14].

4 FAIR AND COMMUNICATION-EFFICIENT FEDERATED LEARNING
In this section, we propose a system architecture and an alternative solution to network-capacity based client
selection, named Fair and Communication-efficient Federated Learning (FCFL), to tackle the performance degra-
dation caused by biased client selection and packet loss. FCFL is lightweight and can be easily integrated into
different kinds of federated learning algorithms to augment their performances.

4.1 System Architecture
We design FCFL with a typical three-layer architecture as shown in Figure 5. Wearables function as data collectors
and run inference during user activities. Periodically, wearables send collected data to paired smartphones that
run local training and participate in federated learning. After the global model updates, the smartphones send
back the new model to the paired wearables and thus complete a cycle. The key differences between FCFL and
other federated learning wearable systems are:
(1) FCFL employs TRA to remove the network-capacity threshold during client selection, thus achieving fair

training.
(2) FCFL employs MAFL to select the most important contributors from the participators, thus improving

communication and aggregation efficiency.
(3) FCFL allows users to operate conveniently and feedback inference errors in real-time for better user

experience.
The core of FCFL is ThrowRightAway (TRA) and Movement Aware Federated Learning (MAFL), as summarized
in Algorithm 1. Next, we explain the details.

4.2 ThrowRightAway
The authors in [44] have recently demonstrated that contrary to common sense, data loss to an extent is not
necessarily harmful in distributed learning systems. Through empirical evaluations, they discover that machine
learning algorithms tolerate bounded data loss (10%–35% in their tests). Inspired by the work, we propose to
explore the loss tolerance in cross-device federated learning systems. We propose TRA scheme to allow the server
to accept any client as an eligible participant even if it has worse network capacities than the requirement and
undesired packet loss ratio during updates uploading.
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Fig. 5. The architecture of FCFL: user 2 is experiencing bad network signal while user 1 and user 3 have good network
connections. Unlike common selection scheme which would drop user 2, TRA allows user 2 to join the federated learning
by replacing the data loss with recalculation (Section 4.2). Then, FCFL selects the most important contributors using
MAFL (Section 4.3). As seen, at time 𝑡 , the local updates of user 2 and user 3 are chosen for model aggregation. Once
converged, a new global model is sent back to all clients and their wearable devices.

At the beginning of the selection, each client compares its network condition with preset standards and sends a
sufficiency investigation report to the server. The report contains only critical information, e.g., 0 or 1, indicating
insufficient or sufficient, thus adding negligible network load3. After collecting the sufficiency reports of all
willing-to-participate clients, the server classified the candidate clients into sufficient and insufficient. Then the
server randomly selects some clients regardless of the belonging groups and sends the global model. The clients
send back updates after local training. Upon detecting loss, the server sends retransmission notification if the
client belongs to the sufficient group or conducts light-weight "recovery", as follows.
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𝑗𝑘
(∀𝑊̂ 𝑡

𝑗𝑘
∈ 𝑊̂ 𝑡

𝑗 ) had been dropped, we replace 𝑊̂ 𝑡
𝑗𝑘

with the corresponding parameter𝑊 (𝑔𝑙𝑜𝑏𝑎𝑙)𝑡−1
𝑘

from the
previous round of the global model.

3For example, the report per client can be carried by one TCP packet. Even assuming the standard TCP MTU size as the upper bound of
additional networking load, it adds only 0.0008% of the model update data volume in the tests of Section 5.2, which is negligible.
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4.3 Movement Aware Federated Learning
As mentioned in the end of Section 2.1, some local updates may provide very limited contributions. Therefore, to
further improve the communication and aggregation efficiency, we explore the relevance of local updates to the
global model convergence. We propose MAFL to spot the local updates with top contributions to global model
convergence. MAFL leverages the concept of "movement pruning" [41], i.e., selecting weights that are moving the
most away from 0. The movement 𝒎𝒐𝒗

(
𝜕𝑳

𝜕𝑊𝑖,𝑗

)
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For simplicity, we only shows the movement of a single layer and assume it is a n-length square in Eq. (3).

Definition 3 (Update relevance). For a M-layer client model update u𝑡 and the global model update ut, we
informally say u𝑡 ’s relevance to ut positively correlates to their cosine similarity:

𝑒 (u𝑡 , ut) = 1
𝑀

𝑀∑
𝑚=1

𝒎𝒐𝒗 (u𝑡𝑚) •𝒎𝒐𝒗 (u𝑡𝑚)
∥𝒎𝒐𝒗 (u𝑡𝑚)∥∥𝒎𝒐𝒗 (um𝑡 )∥

(4)

The goal of MAFL is to select the most irrelevant updates. The rationale is that the less similar a local update is
with the collaborative convergence trend, the more changes it would make toward the new global model. Because
MAFL runs before client selection, it requires the global model update ut in advance. Therefore we use the last
round global model update instead. Then the relevance of client 𝑐 becomes

𝑒 (u𝑡 , ut) ≈ 1
𝑀

𝑀∑
𝑚=1

𝒎𝒐𝒗 (u𝑡𝑚) •𝒎𝒐𝒗 (u𝑡−1𝑚 )
∥𝒎𝒐𝒗 (u𝑡𝑚)∥∥𝒎𝒐𝒗 (um𝑡−1)∥

(5)

Each client calculates its update relevance with the last round global model and reports it to the parameter server
during aggregation. The server selects the top-K contributors (i.e., bottom-K update relevant updates) to upload
updates. The performance of MAFL is validated in Section 5.3.1.
The complexity of MAFL is determined by its major process, i.e., the calculation of update relevance. For a

model update u, the complexity of calculating relevance is 𝑂 (u), which is similar to the complexity of a forward
propagation. Since each client calculates its own relevance, the complexity of this process of all clients equals to
that of one client. Thus MAFL is a lightweight algorithm that adds only negligible delay. Please refer to Section 5.2
for the numerical results.

Takeaway: TRA and MAFL are two logical procedures of FCFL. In the concrete realization, they share
some processes such as the local training, improving the learning performance from different perspectives.
• TRA guarantees communication efficiency by safely avoiding retransmissions while providing fully
fair client selection.
• MAFL further improves the communication and aggregation efficiency by selecting the most
important contributors.
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Algorithm 1: Fair and Communication-efficient Federated Learning (FCFL)
1 Procedure Server:

Input: Server weight𝑤0, users C = ⟨𝑐1, 𝑐2, ...𝑐𝐷⟩, local update step 𝐸

2 for 𝑡 = 1 to 𝑇 do
3 Collect(sufficiencyReport)
4 Categorize(sufficiencyGroup)
5 Select a number of users C𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= ⟨𝐶𝑡

1, ...𝐶
𝑡
𝑛⟩

6 C𝑡
𝑓 𝑖𝑛𝑎𝑙
← MAFL(C𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
, 𝑢𝑡−1) = ⟨𝐶𝑡

1, ...𝐶
𝑡
𝑚⟩

7 w𝑡+1← TRA(C𝑡
𝑓 𝑖𝑛𝑎𝑙

)
8 Get global update u𝑡+1←w𝑡+1 −w𝑡

9 Procedure MAFL:
Input: C𝑡

𝑖𝑛𝑖𝑡𝑖𝑎𝑙
= ⟨𝐶𝑡

1, ...𝐶
𝑡
𝑛⟩, global Update u𝑡−1

10 for each user 𝑐 ∈ C𝑡
𝑖𝑛𝑖𝑡𝑖𝑎𝑙

do
11 u𝑡𝑐 ← LocalUpdate(𝐸, 𝜂,w𝑡−1

𝑐 )// train with learning rate 𝜂 for 𝐸 steps

12 Return relevance 𝑒 (𝒎𝒐𝒗 (u𝑡𝑐 ),𝒎𝒐𝒗 (u𝑡−1))
13 Get the Top-K contributors (i.e., bottom-K update relevant updates) C𝑡

𝑓 𝑖𝑛𝑎𝑙
based on Definition 3

14 Return C𝑡
𝑓 𝑖𝑛𝑎𝑙

15 Procedure TRA:
16 for each user 𝑐 ∈ C𝑡

𝑓 𝑖𝑛𝑎𝑙
do

17 upload(u𝑡𝑐 ))
18 if loss then
19 if sufficient then
20 retransmit(loss)
21 else
22 replace(loss) according to Eq. (1)

23 Return w𝑡+1

5 EVALUATION
In this section, we evaluate FCFL on the performance of communication efficiency, recovery efficiency, fairness,
and personalization. Since there has not been a solution targeting all the metrics mentioned above, we compare
the performances with different baselines separately. A recently published work, Oort [29], has proposed a client
selection mechanism targeting similar metrics. Hence we include Oort as one of the baselines. Because Oort is
implemented with its own framework, FedScale [28], and dataset setup, we constructed the comparison following
its setup for objectivity. We found via tests that other baselines perform differently using FedScale’s setup from
their original papers. Therefore we construct the comparisons with other baselines following their initial setup.

5.1 Experimental Setting
First, we describe the details of the experiment setup. As mentioned, Oort has its own testbed and dataset setup,
and therefore, we provide its experimental information separately.
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Oort setting. We used the testbed FedScale [28] in Oort to compare its performance with FCFL. FedScale
emulates heterogeneous device runtimes of different models, network throughput, and connectivity, using AI
Benchmark [1] and Network Measurements [2] on mobiles. We picked two representative datasets in FedScale
with different scales and tasks: (1) Image Classification: the small-scale FEMNIST dataset with 810k images across
3600 clients. (2) Speech Recognition: the large-scale Google Speech dataset with 105K speech commands over
2600 clients. We followed the original data distribution method provided by the authors to split the data across
the clients. We trained ShuffleNet-V2 for image classification and ResNet-18 for speech recognition. For both
datasets, we set both the minibatch size of each participant and the number of local steps to 20. In addition, the
initial learning rates are 1e-3 and 0.05 for FEMNIST dataset and Google Speech dataset. We set the bandwidth
threshold dynamically to control the packet loss ratio. When the client’s bandwidth is less than the threshold, the
client loses packets to a degree less than the threshold.
Other baselines.We used in FCFL and the baselines the same learning rate, batch size, and number of iterations.
We only considered nonconvex settings with a two-layer deep neural network (DNN) using ReLU activation and
a softmax layer for realistic concern. The synthetic dataset is split randomly with 90% and 10% for training and
testing, respectively. All experiments were conducted using PyTorch version 1.7.1.

5.2 Comparison with Oort
Model performance and cost. As shown in Figure 6, Figure 7, and Table 2, When using FedAvg for model
aggregation, FCFL outperforms Oort in fairness by up to 65.07% and 60.00%, in networking cost up to 29.77%
and 27.06% with only minor accuracy differences at packet loss raio of 30% (-3.42% and -2.94%). We also test the
“top-K” method used in MAFL compared with random selection, both of which used TRA in the face of packet
loss, to further assess the performance of FCFL. Naturally, random selection performs better in fairness (Table 2).
However its convergence is not as stable as using MAFL and the accuracy is a bit lower. Though, overall, it still
considerably performs better than Oort in fairness and networking cost with little sacrifice of accuracy. In Table
2, less than 2 Mb refers to the ratio of the selected clients with less than 2 Mb (not the packet loss threshold),
which is similar for 8 Mb. Cov represents the correlation coefficient between the selected times of each client and
its bandwidth. Var represents the variance of the selected times of each client. As shown, the clients selected by
Oort are strongly related to bandwidth, and the numbers of times the clients are selected are not balanced.

Table 2. Client selection variances of different algorithms on FEMNIST/GoogleSpeech datasets. The variance of rounds
reports how fairness is enforced in terms of the number of participating rounds across clients. A smaller variance implies
better fairness.

Loss ratio Algorithm <2Mb >8Mb Cov Var (Rounds)
0% Oort+FedAvg 0.029/0.097 0.573/0.505 0.209/0.151 6.076/28.774
30% Random_TRA+FedAvg 0.088/0.043 0.480/0.523 0.097/0.203 1.317/11.440
10% FCFL+FedAvg 0.081/0.033 0.496/0.543 0.132/0.199 2.337/14/253
30% FCFL+FedAvg 0.094/0.046 0.489/0.527 0.116/0.223 2.212/11.509
50% FCFL+FedAvg 0.100/0.051 0.463/0.504 0.079/0.177 1.682/9.120

Recovery efficiency of the proposal can be assessed by the amount of retransmitted data and model performance.
As shown, FCFL avoided lots of retransmissions thus has much lower uploading cost. Yet the discarded lost
packets had only minimum impact on FCFL’s model performance, which proves that FCFL efficiently recovered
the lost weights. We choose the Euclidean distance of recovered and lost weight matrices as a complementary
measurement metric to quantify the recovery efficiency. Note that each existing distance metric has its pros and
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(a) Round to accuracy (b) Round to uploading cost.

Fig. 6. Training accuracy and upload cost with different packet loss ratios on FEMNIST dataset. Random indicates randomly
selecting clients with TRA algorithm.

cons and there is not yet a standard one to accurately measure the difference between weight matrices, thus it
only functions as an estimation. As shown in Figure 8, as the model converges, the average Euclidean distances
between recovered and lost weight matrices became smaller, which is reasonable since the gradients became
closer to zeros. We observe that the efficiency difference is much smaller compared with the packet loss ratio
difference, thus proving the robustness of the recovery method in the face of different packet loss ratios to some
extent.
Lightweight. As mentioned in the end of Section 4.3, MAFL of FCFL is a lightweight algorithm. To valid this
argument, we measured the additional processing delay brought by MAFL on both datasets. On FEMNIST dataset,
for ShuffleNet-V2 model, the average training time per epoch is 1.1758 second, while the processing delay of
MAFL is 0.1223 second. On Google Speech dataset, for ResNet18 model, the average training time per epoch is
4.4653 seconds while the processing delay of MAFL is 0.0738 second. As such, the delay brought by MAFL is
indeed negligible.

5.3 Other Baselines
5.3.1 Communication Efficiency. We select CMFL [43] and vanilla FedAvg as other baselines for communication
efficiency (please refer to the beginning of Section 5). During aggregation, CMFL also uploads the clients’ model
based on the similarity of local and global models. The fundamental differences between FCFL and CMFL
are twofold: (1) The definition of “relevance”: FCFL selects the clients’ weight to update based on the cosine
similarity of the model4 weight’s movement while CMFL is based on the percentage of same-sign parameters in
the updates. (2) Scope of comparison: FCFL compares relevance only among selected participators while CMFL
compares among all clients. To select top-K contributors (K is automatically adjusted according to the movement
similarity), we assign a pre-defined threshold, 𝑇𝐻 = 𝑡ℎ/

√
𝑡 [43], to both FCFL and CMFL. That is, among the

selected participators, only the model updates with a relevance lower than the threshold are required to upload for
aggregation. We conduct two sets of evaluations, i.e., in the ideal network without packet loss and lossy networks.

4In the evaluation, we used FedAvg as the basics of the aggregation algorithm. Thus each local update was essentially a local model. Therefore,
we use update and model interchangeably in this context.
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(a) Round to accuracy (b) Round to uploading cost

Fig. 7. Training accuracy and upload cost with different packet loss ratios on Google Speech dataset. Random indicates
randomly selecting clients with TRA algorithm.

(a) FEMNIST dataset (b) Google Speech dataset

Fig. 8. Average Euclidean distance between the recovered and lost weight matrices during training on FEMNIST and Google
Speech datasets.

We use Synthetic(1,1) dataset as described in Section 3.2. The goal is to show the algorithms’ communication
efficiencies in different network conditions and their robustness in the face of packet loss.

Ideal network. First, we evaluate the algorithms in an ideal network condition without packet loss. As shown in
Table 3, FCFL converges faster than the baselines to a similar accuracy. Meanwhile, FCFL decreases communication
cost by 26.27% and 27.09% compared with CMFL and vanilla FedAvg. As seen, FCFL provides better communication
efficiency than the baselines in all accuracy-achieving points in ideal network conditions.

Lossy network. Next, we evaluate the loss tolerances of the algorithms. Characterizing the client transmission
delays with a lognormal distribution, we select three delay thresholds to practically function as the packet loss
controllers. That is, when a delay larger than the threshold occurs, the algorithm processes or discards the loss
with its own mechanism, e.g., TRA (FCFL) or retransmission (others). More specifically, we select 60, 115 and 280
as the thresholds, indicating 10%, 30% and 50% packet loss ratios. As shown in Figure 9, FCFL is more robust and
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(a) Round to accuracy. (b) Round to upload cost.

Fig. 9. Performance with 30% packet loss ratio on Synthetic dataset using different client selection methods.Random indicates
randomly selecting clients with TRA algorithm.

Table 3. Communication cost on Synthetic dataset in ideal network condition without packet loss. x% acc and 𝑦 (𝑧) mean
achieving model accuracy of x% with 𝑦 Mb uploading cost and 𝑧 training rounds.

Algorithm 50% acc 60% acc 70% acc
FedAvg 12.726 (11) 31.845 (27) 90.395 (76)
CMFL 12.547 (11) 30.411 (26) 89.380 (76)
FCFL 9.201 (9) 26.348 (25) 65.899 (69)

converges to a higher accuracy in lossy network conditions than CMFL. Table 4 shows that FCFL decreases the
communication cost compared with the baseline by more than 35.76% in all cases. The reasons are below listed.
(1) Cosine similarity of the movements (employed by FCFL’s MAFL) characterizes the relevance of local

updates with global update more accurately than the percentage of same-sign parameters (employed by
CMFL)

(2) FCFL is more computation efficient than CMFL (require fewer comparisons).
(3) When a client’s local model meets packet loss on some of its weight and replaced by TRA, movement-

similarity-based MAFL better captures the noise led by such replacement thus uploading local models with
similar local dataset distribution more frequently.

The performance comparison between “top-K” and random selection, both based on TRA, is similar with the
result in Oort setup (Section 5.2). That is, random selection algorithm converges less stably to a lower accuracy
than MAFL, while performing better than CMFL in accuracy and networking cost.

5.3.2 Fairness and Personalization. FCFL is highly integrable with relevant algorithms to improve fairness and
personalization performances. For verification, we redo the evaluations conducted in Section 3.2. We compare the
performance of the algorithms (FedAvg, q-FedAvg, pFedMe) limited by the network-capacity based selection with
the integrated algorithms. For realistic concern, we only consider nonconvex settings. Similarly with Section 3.2,
we consider three eligible ratios (Definition 2), i.e., 70%, 80%, and 90% which cause different degrees of bias in client
selection in network-capacity based settings. For each eligible ratio, we consider a variety of packet loss ratios,
i.e, 10%, 30%, and 50%, for the insufficient clients (defined in Section 4.2). Since data heterogeneity has important
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Table 4. Communication cost on Synthetic dataset with different packet loss ratios, i.e., 10%, 30% and 50%. 𝑥%acc and 𝑦 (𝑧)
mean achieving model accuracy of 𝑥% with 𝑦 Mb and 𝑧 training rounds.

Loss ratio Algorithm 60% acc 65% acc 70% acc
10% CMFL 44.618 (42) 63.554 (60) 98.249 (94)

FCFL 35.833 (40) 42.277 (48) 63.108 (74)
30% CMFL 53.885 (67) 75.689 (94) 144.379 (188)

FCFL 30.774 (45) 49.557 (75) 91.835 (153)
50% CMFL 80.824 (140) 97.322 (171) 157.396 (288)

FCFL 32.618 (69) 53.652 (122) 97.145 (235)

effects on fairness and personalization, we use both Synthetic(1,1) and Synthetic(2,2) datasets (Footnote 2) to get
better understanding of the performances under the bias.

Fig. 10. Sample based accuracy performance of FedAvg and q-FedAvg using the biased network-capacity based selection, and
FCFL-q-FedAvg on Synthetic(1,1) and Synthetic(2,2) datasets (Footnote 2) with 70%, 80%, and 90% eligible ratios (Definition 2).
FCFL-a-FedAvg-X% indicates the packet loss ratios %(10%, 30%, 50%).

Fig. 11. Fairness performance distribution of q-FedAvg using the biased network-capacity based selection and FCFL-q-
FedAvg on Synthetic(1,1) and Synthetic(2,2) datasets (Footnote 2) with 70%, 80%, and 90% eligible ratios (Definition 2).
FCFL-a-FedAvg-X% indicates the packet loss ratios (10%, 30%, 50%).

Accuracy. The integration of FCFL and q-FedAvg presents the best accuracy performance in the face of packet
loss. As shown in Figure 10, FCFL-q-FedAvg outperforms biased-FedAvg and biased-q-FedAvg in all scenarios.
With slightly longer convergence periods, FCFL-q-FedAvg (10% loss ratio) improves the model accuracy on
Synthetic(1,1) by 10.35%/6.69%, 8.44%/3.48%, and 9.31%/-0.79%, compared to biased-FedAvg and biased-q-FedAvg
in 70%, 80%, and 90% eligible ratio scenarios, respectively. On Synthetic(2,2), the corresponding improvements
are 9.88%/7.39%, 3.62%/1.62%, and 2.75%/-1.4%. In a word, when more than 10% clients have worse network than
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Table 5. Client based fairness performance of q-FedAvg with biased network-capacity based client selection Vs FCFL-q-
FedAvg, with 70%, 80%, and 90% eligible ratios (Definition 2). Best/Worst 10% indicate the top 10% best/worst accuracies. The
gray color highlights the best performance algorithms.

70% Synthetic(1,1) Average Best/Worst 10% Variance Synth(2,2) Average Best/Worst 10% Variance
q-FedAvg-biased 55.00% 100% / 0 1439 62.34% 100% / 0 1584

FCFL-q-FedAvg-10% 61.63% 100% / 6.01% 1031 69.72% 100% / 9.81% 870
FCFL-q-FedAvg-30% 59.44% 100% / 4.11% 1021 55.38% 99.69% / 0 1109
FCFL-q-FedAvg-50% 50.99% 99.97% / 0 1220 55.00% 99.98% / 2.81% 1125

80% Synthetic(1,1) Average Best/Worst 10% Variance Synth(2,2) Average Best/Worst 10% Variance
q-FedAvg-biased 58.90% 100.00%/0 1286 67.14% 100.00%/0 1379

FCFL-q-FedAvg-10% 62.38% 100.00%/4.11% 1020 68.76% 100.00%/8.45% 916
FCFL-q-FedAvg-30% 62.79% 100.00%/8.10% 926 61.59% 100.00%/1.36% 1073
FCFL-q-FedAvg-50% 54.45% 99.83%/0 1194 60.80% 100.00%/0 1195

90% Synthetic(1,1) Average Best/Worst 10% Variance Synth(2,2) Average Best/Worst 10% Variance
q-FedAvg-biased 64.04% 100.00%/5.39% 1009 70.60% 100.00%/3.43 918

FCFL-q-FedAvg-10% 63.25% 100.00%/2.92% 1030 67.74% 99.64%/15.01% 759
FCFL-q-FedAvg-30% 63.53% 100.00%/4.35% 985 65.07% 99.85%/11.78% 876
FCFL-q-FedAvg-50% 57.42% 100.00%/0 1162 67.33% 100.00%/5.27% 1012

standard, FCFL-q-FedAvg would considerably improve aggregated model accuracy over FedAvg and q-FedAvg
with network-capacity based selection. We reason the performance is because (1) FCFL allows a wider selection
of participants thus increasing the learning space with the cost of some data integrity. (2) q-FedAvg employs
the idea of 𝛼-fairness [36] to give higher relative weights to the clients with higher losses. As such, q-FedAvg
compensates for the effect of the packet loss due to FCFL.

Fairness. Weutilize FCFL-q-FedAvg to tackle the fairness degradation caused by biased client selection in Table 1.
As shown in Figure 11, FCFL-q-FedAvg outperforms biased-q-FedAvg in most scenarios and the superiority
increases as the data heterogeneity increases and the eligible ratio decreases. Table 5 summarizes the accuracy
and variance results and highlights the best-performed algorithms in different scenarios. Note that the accuracies
presented in Table 5 are on the granularity of per-client to depict inter-client fairness better. In contrast, the
accuracies in Figure 10 are sample-based for higher granularity. As seen, FCFL improves the fairness performance
in all cases and at the most by 45.07%.

Personalization. We integrate FCFL with pFedMe to tackle the personalization performance degradation caused
by biased client selection as shown in Figure 4. As shown in Figure 12, FCFL-pFedMe demonstrates comparable
mean accuracy to pFedMe in the local personalized model. Although FCFL-pFedMe is sightly less accurate
than pFedMe by 1% in the local personalized model, FCFL-pFedMe outperforms pFedMe in the global model
significantly by 20% at the most.
Takeaway:. FCFL increases the communication efficiency compared with the baselines by achieving similar
accuracies with fewer uploading updates. FCFL also shows better loss tolerance that the model accuracy is more
robust in the face of packet loss. Integrating FCFL with q-FedAvg enables learning from the entire sample space
while mitigating the effect of packet loss by adaptively recalculation. As a result, it improves both accuracy
and fairness performances. FCFL considerable improves the global performance of pFedMe compared to in
network-capacity based settings with a relevantly negligible cost of local model accuracy.
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Fig. 12. Personalization performance of pFedMe using the biased network-capacity based selection and FCFL-pFedMe with
70%, 80%, and 90% eligible ratios (Definition 2). Label p refers to the average local accuracy after personalization while G
refers to the global accuracy. FCFL-pFedMe-X% indicates the packet loss ratios (10%, 20%, 30%). We adapted the tested loss
ratios according to the observed performance boundary.

6 RELATED WORK

6.1 Federated Learning Over Wearables
As mentioned in Section 1, federated learning can fundamentally improve privacy in the context of large-scale
wearable data learning. In general, federated learning can be divided into cross-silo and cross-device federated
learning systems based on different kinds of clients. The cross-silo federated learning system meets relatively
fewer failures caused by clients because each client can be specifically accessed thanks to a clear and unique
identity and is available for local model updates or parameter updates almost at any time [22]. In contrast, the
cross-device federated learning system faces challenges from stateless and unreliable clients due to dynamic
client participation and communication bottlenecks. Compared with other mobile devices, wearables have lower
computation, storage, and networking capacity thus face more severe challenges.

All the problems above elicit the demand for a federated learning system fully utilizing the capacity and data of
wearables while avoiding draining the batteries. In the context of other systems, DeepWear [46] lets a wearable
device adaptively offload the partition of training task to a paired handheld device, based on the resource status of
both devices. We leverage federated learning to improve the training efficiency using distributed users’ datasets.
Further, we notice another systematic flaw overlooked by existing works. Like all other machine learning systems,
Federated learning systems should allow human oversight to monitor and adjust its performance for better QoE.
Therefore, the cross-device federated learning should incorporate a component in the system design that allows
user corrections or feedback to the model performance.

6.2 Fairness
Machine learning models can often exhibit unfair behaviors not on purpose. For example, we may categorize the
model as “biased” when undesirable effects happen on some users who share similar characteristics with the
others, or different outcomes occur for certain sensitive groups [4, 16]. The criterion of counterfactual fairness
requires that a user receive the same treatment regardless of the belonging group [27].
Relatedly, cross-device federated learning does not have access to sensitive attributes for most cases. For

instance, wearable activity monitoring applications require only sensor data and do not need the information of
the age and gender of the users. As a result, device characteristics (e.g., computation capacity) and conditions
(e.g., battery status) become the key factor of fairness instead of sensitive user attributes (e.g., gender, race, age).
As mentioned in Section 2, we summarize common factors for bias in federated learning as: (1) over-represented,
(2) under-represented, (3) never-represented.
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(1) and (2) can be solved with some approaches targeting training procedure bias such as AFL [37] and
q-FedAvg [31]. AFL minimizes the maximum loss incurred on the worst-performing devices as a classical
minimax problem. q-FedAvg generalizes AFL by allowing for a flexible tradeoff between fairness and accuracy.
These approaches focus on enforcing accuracy equity by mitigating the training procedure bias. However,
they can not solve (3) caused by training data bias, as also noted by the authors of AFL. On the other hand,
aggregation approaches with only model weights taken into account have also been proved unable to tackle this
challenge [23, 33]. Therefore, a scheme tackling this challenge from the client selection phase is demanded.

6.3 Personalization
Due to the different user behaviors and heterogeneous devices, it is safe to assume wearables generate non-i.i.d
datasets. Such a situation necessitates the personalized models customized by local data for different clients,
as they may outperform the best possible global model. The tension between the fairness/uniformity and the
average accuracy [31] further stresses the necessity of personalization while improving global model accuracy
and fairness. Recent works have proposed varied personalization schemes for federated learning [26], e.g.,
featurization, transfer learning, multi-task learning, and meta-learning [10, 14, 17, 19, 20, 24, 42] etc.
To the best of our knowledge, all schemes mentioned above still (at least partly) rely on the convergence of

the global model. More specifically, existing schemes use different methodologies to convey the information of
personalized model into the global model as a reference, to balance the convergences of both models. When some
users are never-represented in the aggregation, the global model does not incorporate the knowledge of such
users, thus generating a biased model. As a result, the personalization performance on never-represented users
is inevitably impacted. On the other hand, conveniently allowing user feedback on the wrong recognition is
essential for personalized model-tuning. To the best of our knowledge, our work serves as the first effort to enable
user feedback anytime during or after activities and record such feedback in the next-round training dataset.

7 DISCUSSION
Benefits of including data from under- and never-represented users. FCFL serves as a groundwork for fairness-

aware distributed machine learning [5], which considers the participators under various constraints and hence
achieves comprehensive representation of the users [13]. Such algorithmic fairness could prevent biased services
or decision-making processes that disadvantaged the ‘under-represented’ and ‘never-represented’ users. Because the
never-represented user group can be the one who demands the service the most, involving their data in training
can potentially bring considerable benefits in numerous cases. For instance, many healthcare products require
users to wear wearable devices periodically or even daily to effectively collect enough data for model training.
The users who became never-represented due to various reasons, e.g., networking, computational resources,
battery life, or any other constraints, may happen to be the ones who demand the most care, e.g., patients with
the most severe illnesses. Using techniques like FCFL to allow their data to participate in federated learning
is crucial to improving their experience of the services. Furthermore, the aging individuals may own limited
budgets on their mobile service plans and have received unsatisfied network capability for distributed machine
learning. It is worthwhile to mention that the aging population could serve as a valuable yet indispensable data
source to improve the generalizability of such machine learning models especially designed for monitoring and
tracking of health, sleeping patterns, and sports activity.

Potential Application. Besides sports monitoring applications such as our prototype, FCFL can be further
applied to diversified applications. Relatedly, distributed machine learning is expected to be employed in the era
of advanced network communication (e.g., 6G network), which is primarily designed to serve robotics, unmanned
vehicles, surveillance camera, and IoT devices. For example, as one of the emerging unmanned vehicles appeared
in the commercial market, automotive requires a comprehensive understanding of not only the surrounding
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items but also the dynamic behaviors of other vehicles so that the vehicle can predict the near future and be
precautious of potential dangers. As each driver’s safety gets improved as the training data gets more completed,
every vehicle’s data into the training matters. In the end, the vehicles that cause accidents have always been a
minor group (e.g., careless drivers nowadays), and they can very well happen to be the never-represented users.
In this case, FCFL can help to include more users’ data with fewer networking constraints.

Limitation. We developed TRA as a lightweight algorithm to lower the computational complexity. It can
efficiently mitigate the effect of packet loss (< 30%) by adaptive recalculation. However, when a packet loss
> 30% occurs, TRA is not sufficient to compensate for the lost data and impact the model training. We reason
this is due to the simplicity of the recalculation (Eq. 1), which has a limited capability of loss recovery. On the
other hand, although MAFL effectively selects the most critical updates from the participators, thus improving
communication and aggregation efficiency, it is possible to bring bias. The reason is some local updates may
make less contributions, but they do represent some users’ data distributions. In such cases, a bias towards them
can happen by excluding their updates. Although we have not noticed the impact of this point in the numerous
evaluations, a comprehensive theoretical analysis could be helpful.

Future directions. Through empirical evaluations, we find that the lightweight FCFL works well in lots of
scenarios. However, we also note that the FCFL performance is sensitive to the hyperparameters occasionally.
Therefore, we plan to conduct a theoretical analysis of the algorithm and explore its potential with comprehensive
optimization problem formulation. The next research milestone attempts to generalize the algorithms to make the
system performance robust in the face of varied hyperparameters. Additionally, we will conduct follow-up studies
to examine the effect of network-driven algorithmic bias on the user satisfaction of mobile services supported by
distributed machine learning.

8 CONCLUSION
In this work, we investigate FCFL, a fair and communication-efficient federated learning system for wearables.
The trace-driven analysis finds that the commonly assumed limit network challenge is overstated but can cause
biased client selection. We show through evaluations that the induced bias has severe impacts on the performance
of federated learning, i.e., model accuracy, fairness, and personalization. FCFL can avoid the bias by allowing all
clients, regardless of networking constraints, to participate in the training with loss tolerance (up to 30%) and thus
improve fairness during client selection. Further, FCFL selects the most critical updates from participators based
on update relevance (Definition 3) and thus improves the communication efficiency during model aggregation.
FCFL is easily integrable with SOTA federated learning algorithms. Through numerous tests, the FCFL-integrated
algorithms present superior performances on the accuracy, fairness, and personalization in most scenarios. Last
but not least, we implemented a full-stack prototype system and developed a sports app with a convenient user
feedback mechanism for a better personalized model-tuning experience. We demonstrate the system’s training
performance over HAM datasets, and a follow-up user study shows the FCFL-supported prototype significantly
reduces physical workload, user efforts, and frustration.
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Stefano Mazzocchi, H Brendan McMahan, et al. 2019. Towards federated learning at scale: System design. MLSys (2019).
[7] Sebastian Caldas, Jakub Konečny, H Brendan McMahan, and Ameet Talwalkar. 2018. Expanding the reach of federated learning by

reducing client resource requirements. arXiv preprint arXiv:1812.07210 (2018).
[8] Yekta Said Can and Cem Ersoy. 2021. Privacy-preserving Federated Deep Learning for Wearable IoT-based Biomedical Monitoring.

ACM Transactions on Internet Technology (TOIT) 21, 1 (2021), 1–17.
[9] CCPA. 2021. California Consumer Privacy Act. https://www.caprivacy.org/.
[10] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao. 2020. FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE

Intelligent Systems (2020).
[11] Federal Communications Commission. 2020. Measuring Broadband America Mobile Data. https://www.fcc.gov/reports-research/reports/

measuring-broadband-america/measuring-broadband-america-mobile-data.
[12] Bart Custers, Alan M Sears, Francien Dechesne, Ilina Georgieva, Tommaso Tani, and Simone Van der Hof. 2019. EU Personal Data

Protection in Policy and Practice. Springer.
[13] Mark Diaz. 2019. Algorithmic Technologies and Underrepresented Populations. Conference Companion Publication of the 2019 on

Computer Supported Cooperative Work and Social Computing (2019).
[14] Canh T Dinh, Nguyen H Tran, and Tuan Dung Nguyen. 2020. Personalized federated learning with Moreau envelopes. NeurIPS (2020).
[15] Yuanrui Dong, Peng Zhao, Hanqiao Yu, Cong Zhao, and Shusen Yang. 2020. CDC: Classification Driven Compression for Bandwidth

Efficient Edge-Cloud Collaborative Deep Learning. IJCAI (2020).
[16] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through awareness. In ITCS.
[17] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized federated learning: A meta-learning approach. arXiv preprint

arXiv:2002.07948 (2020).
[18] Boli Fang, Miao Jiang, Pei-yi Cheng, Jerry Shen, and Yi Fang. 2020. Achieving Outcome Fairness in Machine Learning Models for Social

Decision Problems.. In IJCAI. 444–450.
[19] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In ICML.
[20] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé

Kiddon, and Daniel Ramage. 2018. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018).
[21] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. 2020. The non-iid data quagmire of decentralized machine learning.

In ICML.
[22] Peter Kairouz, H BrendanMcMahan, BrendanAvent, Aurélien Bellet, Mehdi Bennis, ArjunNitin Bhagoji, Keith Bonawitz, Zachary Charles,

Graham Cormode, Rachel Cummings, et al. 2019. Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977
(2019).

[23] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh. 2020. Scaffold:
Stochastic controlled averaging for federated learning. In ICML.

[24] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. 2019. Adaptive gradient-based meta-learning methods. In NeurIPS.
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Appendix A USER EVALUATION
We implemented an FCFL-supported sports application on a smartwatch that is highly characterized by the limited
computational resource and the ease of user interaction [30]. The application features intelligent recognition
of user activities during sports activity, with the following spotlights. First, the user with the application only
needs to press the start button and immediately start the sports activities, while the application can automatically
recognize the activity. Second, due to the automatic activity recognition, users do not need to manually set
the activities once another activity type has been made, for instance, switching from running to cross-trainer
activities. Third, when a user notices a wrong recognition, the user can conveniently click the result and select
the correct one anytime during or after the activity. The result is immediately recorded in the database, and given
a higher weight in next-round training to help model-tuning. With the aforementioned user-centered features,
the applications were evaluated remotely by 17 participants.

A System Prototype of FCFL – A sport application. We implemented a prototype of FCFL following the system
architecture shown in Figure 5. Specifically, we built the parameter server using PyGrid5 on Ubuntu 16.04; the
clients as an Android smartphone app using KotlinSyft6 on Android 9, the wearable as a sport monitoring app
on WearOS 2.35. We deployed the server in a MSI GS65 Stealth 8SG laptop equipped with a 6-core I7-8750H
CPU, 32GB of memory, and an Nvidia RTX 2080 Max-Q GPU; the client in a Huawei Mate9 Pro smartphone,
equipped with a 2.4 (1.8) GHz octa-core HiSilicon Kirin 960 CPU and 4GB of memory; the wearable in a Suunto
7 smartwatch. Figure 13 shows the prototype including user interfaces of the client (a smartphone) and the
wearable (a smartwatch). A demonstration video7 shows the key functions of the FCFL-supported application.
Remarkably, the FCFL-supported application offers a user feedback channel that allows users to report inaccurate
activity recognition.
We first tested the algorithm and model with a public dataset8. The dataset was collected with 8 users, and

each user was equipped with 5 devices on the body positions of the torso, right arm, left arm, right leg, and left
leg. To align with our wearable use case, we used only the data collected from left-arm device, which consists of
the X, Y, Z axis values of the accelerator, gyroscope, and magnetometer, i.e., 9 features. Splitting the dataset by
90/10 for training data and testing data, our model performs both training accuracy and test accuracy > 97% on
average, as shown in Figure 14.

A.1 Study Design
We prepared two videos for the user interviews remotely via zoom, as follows: The first video shows the FCFL-
support sport application, in which themachine learning algorithms can recognize the user activities automatically.
The video has demonstrated that the user with FCFL can reduce the burden of selecting activities manually, and
automatic activity switches from one to another. In contrast, the second video is a baseline application, namely
Suunto. As Suunto does not support any intelligent sensing of human sports activity driven by machine learning
algorithms, users in the video have to manually select the target activities, and re-select other activities during
the activity switches. The two videos have pinpointed the differences in user interaction with smartwatches,
especially when users have to select a new activity and switch from one activity to another (automatic vs. manual
operations involving a series of tap-and-swipe operations on the touchscreen of a smartwatch). In particular, our
videos contain several FCFL screenshots displaying activity recognition and switching in automatic manners.
The two videos do not last longer than two minutes to ensure the user memory does not become a bottleneck to
the user evaluation for both the application conditions.
5https://github.com/OpenMined/PyGrid
6https://github.com/OpenMined/KotlinSyft
7https://bit.ly/3jNL2w0
8https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities
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(a) Client UI on an Android smartphone. Optional func-
tions in the UI includes manually requesting to partici-
pate in federated training, starting the companion app
in the watch, and sending an updated model to the com-
panion app.

(b) Wearable UI on WearOS (i.e., smartwatch interfaces).
The leftmost UI shows the inference result provision,
which informs the user once the app is stopped. Upon
the need for result correction, the user can simply click
on the result which shows up the rightmost UI with
available activity choices. By clicking on the activity icon,
the appwill record the correct result in the corresponding
data file.

Fig. 13. User interfaces.

(a) Training accuracy. (b) Test accuracy. (c) Loss.

Fig. 14. Training performance with HAM dataset. 𝑋 axis indicates steps.

A.2 Procedures
Due to the Covid-19 pandemic and the recent lockdown restriction in the local region, we conducted interviews
remotely with our participants via Zoom. During the user interviews, we described the critical functions of the
applications. Next, we showed the two videos representing two experimental conditions to the participants. Once
a video display had been completed, we distributed a NASA Task Load Index questionnaire to the participants.
Table 6 demonstrates the six user workloads on a 0–100 scale between the FCFL-support sport application
and a standard sport application (the baseline) on smartwatches, where the lower the score, the higher the
user preference. The two videos were selected and displayed randomized to alleviate carry-over effects causing
any threats to internal validity. After finishing the questionnaire, another survey about user information and
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Table 6. NASA Task Load Index (TLX) for an FCFL-supported sport application (FCFL), and a baseline sport application on a
smartwatch, showing mean and standard deviation (SD) in the 2𝑛𝑑 , 3𝑟𝑑 columns, and statistical F-Critical values / p-values
in the 4𝑡ℎ and 5𝑡ℎ columns, with a total of 17 participants. Statistical significance are depicted by numbers in the italic style.

Workload FCFL Baseline F-Crit.–𝐹 (1,32) p-value

Mental 14.06 (15.37) 28.06 (23.87) 4.13 0.05
Physical 15.41 (15.76) 42.24 (30.58) 10.34 <0.01

Temporal 35.00 (34.60) 34.88 (23.90) 0.0001 0.99
Performance 20.12 (24.37) 35.12 (20.13) 3.82 0.06

Effort 16.41 (16.08) 36.41 (23.87) 8.21 <0.01
Frustration 14.94 (14.86) 31.35 (24.75) 5.49 0.03

technology literacy of smartwatches and sports application were presented to the participants. The entire
interview lasts no longer than 20 minutes per participant.

A.3 Participants
We recruited a total of 17 participants from our university campus. Regarding the ages of the participants, 76.5%
and 17.6% of them were ranged 21–30 and 31–40, respectively. The participants reported a variety of smartwatch
usage frequencies: ‘Daily’ (41.2%), ‘Usual’ (5.9%), ‘Rare’ (11.8%), and ‘Never Own a Smartwatch but Tried Before’
(41.2%). Also, their frequencies of sports application usage are as follows: ‘Daily’ (35.3%), ‘Weekly’ (29.4%),
‘Monthly’ (11.8%), and ‘Others’ (23.5%), showing that the majority of participants own sufficient technology
literacy to the purposes and functions of the standard sports applications. The participation was wholly voluntary
and consent-based. The experimental protocols were approved by the university’s institutional review board (IRB).
We remunerated all participants with a compliment letter, under the premise of social distance, to appreciate
their participation.

A.4 User Workload (Results)
We first checked the normality of the user responses with the Shapiro-Wilks Test, as the variance between
conditions. Then, we ran a One-way ANOVA to analyze the user responses reflecting the six metrics. Table 6
shows the six metrics in terms of physical, mental, temporal, performance, effort, and frustration. The one-way
ANOVA shows that statistical significance exists in physical, effort, and frustration, but not temporal. The results
indicated that activity recognition during sports allows users to reduce the physical burdens from a series of
tap-and-select operations during menus and buttons selection. In general, the users with the FCFL-supported
sports application feel more manageable and less frustrated than the baseline application.

It is important to note that the metrics of mental and performance are sightly higher than the threshold of 0.05
(p-value). Albeit no statistical significance has been found, such metrics show improvements by 42%–49%. The key
reason is that the user interactions on the standard application (Suunto) are highly simplified, i.e., less than five
interaction costs (tap/switch) to begin or cease the activity recognition. It is expected that the user response will
become distinguishable once the complexity of user interfaces increases. Surprisingly, there exists no statistical
significance in the metric of temporal. Initially, we expect that the participant can realize the inconvenience of
tap-and-swipe operations during a running task, i.e., unstable pointing on the small surface of a miniature-sized
touchscreen on a smartwatch. However, most of the participants did not reflect such inconvenience in the video.
We conjecture the study method of remote interviews (with video demonstration) limits the user experience.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 0, No. 0, Article 0. Publication date: 2022.



0:26 • Zhou et al.

If re-experiments are permitted after the lockdown situation, we expect users in outdoor scenarios to strongly
sense the aforementioned hurdles and hence temporal demands.

Takeaway: FCFL on devices with insufficient computational resources (e.g., smartwatches) can achieve
intelligent sensing of user activities, driven by machine learning algorithms. Such benefits can reduce the
user’s physical workload and alleviate the user’s effort and frustration due to the inconvenient interactions
with the miniature-size smartwatch. It is worthwhile to mention that FCFL can be further extended to
other wearable devices like smart glasses and other applications such as the tracking/ monitoring of sleep
patterns and health conditions.
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