
Enhanced Augmented Reality Applications in
Vehicle-to-Edge Networks

Pengyuan Zhou∗, Wenxiao Zhang†, Tristan Braud†, Pan Hui∗†, Jussi Kangasharju∗
∗Department of Computer Science, University of Helsinki

†Department of Computer Science and Engineering, The Hong Kong University of Science and Technology

Abstract—Vehicular communication applications, be it for
driver-assisting augmented reality systems or fully driverless
vehicles, require an efficient communication architecture for
timely information delivery. Centralized, cloud-based infrastruc-
tures present latencies too high to satisfy the requirements of
emergency information processing and transmission. In this pa-
per, we present EARVE, a novel Vehicle-to-Edge infrastructure,
with computational units co-located with the base stations and
aggregation points. Embedding computation at the edge of the
network allows to reduce the overall latency compared to vehicle-
to-cloud and significantly trim the complexity of vehicle-to-
vehicle communication. We present the design of EARVE and
its deployment on edge servers. We implement EARVE through
a bandwidth-hungry, latency constrained real-life application. We
show that EARVE reduces the latency by up to 20% and the
bandwidth at the server by 98% compared to cloud solutions at
city scale.

I. INTRODUCTION

Automated driving has recently gotten closer to becom-
ing a reality. In 2018, California and Shanghai authorized
the deployment of autonomous vehicles on public roads for
testing purposes [1], [2]. In parallel to automated driving,
manufacturers are constantly improving the assistance systems
embedded inside vehicles. These systems nowadays heavily
rely on environment sensing for signaling potential danger to
the driver and taking decisions if necessary. For instance, most
manufacturers developed emergency braking systems for their
top of the line vehicles. By combining information from the
embedded radar and camera, the system can detect and prevent
imminent collisions.

Although automated systems efficiently improve road safety,
they are limited to the point of view of a single vehicle.
However, some complex situations require assembling an ag-
gregated point of view over several vehicles to avoid collisions.
For instance, if the braking distance is too short to avoid a
collision, the vehicle may choose another emergency maneuver
such as steering into another lane. The system should request
status from other vehicles in the area to assess the safety of the
operation. Vehicular communication systems therefore play a
key role in sharing information between vehicles and roadside
infrastructure units (RSU). Current solutions focus on three
types of communication: vehicle-to-vehicle (V2V), vehicle-to-
cloud (V2C), and vehicle-to-roadside infrastructure (V2I) [3],
[4]. Although these solutions fulfill basic demands, efficiently
sharing complex and large volumes of data among vehicles at
scale remains a challenge.

=

1
2

Figure 1: Common connected vehicles scenarios

Figure 1 illustrates two common scenarios, with their rela-
tive latency and scale requirements:

1) The leading truck encounters an unexpected pothole. The
truck notifies the following cars to avoid a potential
accident. Real-time latency, street scale.

2) Congested traffic is out of sight for cars planning to
take the road on the right. Vehicles in the congestion
broadcast to all the network so that cars can compute
another optimal itinerary. Medium latency, city scale.

Current V2V, V2C, or V2I architectures and solutions cannot
handle these scenarios due to the diversity of the requirements.
In V2C, the combined latency of transmission, processing, and
distribution prevents emergency decisions to be propagated on
time. On the other hand, although V2V significantly improves
performance at close distance, forwarding information at city-
scale is inefficient and costly. Finally, V2I provides better data
distribution. However, sharing accurate emergency information
entails nontrivial computation and coordination in a limited
amount of time. Roadside infrastructures should therefore
integrate computing features for fast and reliable emergency
information propagation.

Edge computing facilitates latency-sensitive workloads by
performing data processing in Edge Servers (ESes) located
close to the user. The gain in latency provided by edge
computing can be considerable. In Table I, we measured the
round trip latency for various servers through an LTE network.
The first pingable IP is regarded as Edge server. We then

Edge A B C

19.9 ms 24.9 ms 52.4 ms 58.8 ms

Table I: Average network round-trip latency over LTE to
different targets

consider the closest cloud servers provided by three leading
companies in the market: A (local to the city - 5 km), B
(nearby country – 1000 km) and C (A country further away
– 2500 km). Unsurprisingly, the latency to the closest cloud
server is half the round trip time to the furthest cloud server.
The ES presents a 20% improvement compared to the nearest
cloud server. These 5 ms may become vital in the case of
road safety, especially considering that latency is cumulative
in the case of information propagation. For a V2C application
residing at either site B or C, the latency improvement is
considerable.

In this paper, we propose EARVE, the first vehicle-to-edge
(V2E) framework to enhance vehicular communications. As an
extension of our previous work [5], we propose the specific
design of edge server and the interactions between server
functionalities and the system (section III). We also implement
a prototype and evaluate it with a preliminary experiment (sec-
tion VI). Our design integrates both cloud and edge computing
capabilities for city-wide autonomous and semi-autonomous
vehicle communications. First of all, we stress that EARVE
network-agnostic in terms of the physical layer on top of
which it is run. Currently, two main alternatives exist for ve-
hicular networks, Direct Short Range Communication (DSRC)
and 5G [6]. While 5G seems to have its advantages [7],
DSRC has already been adopted and deployed for tested
solutions [8]. Since EARVE does not depend on any particular
features of the underlying network, it can run on current
(LTE) and future communication infrastructures seamlessly,
while formulating recommendations for service provision and
infrastructure deployment. As a concrete example, we apply
EARVE to connected vehicle views by demonstrating the use
cases, i.e., View Share, in Section IV.

This paper makes three key contributions.
• We present the design of EARVE, which equips edge

RSUs with computation and cache capacity. We describe
the implementation details and communication flows
within the edge servers and between them.

• We describe a concrete application of EARVE to connect
vehicle views using Augmented Reality Head-up Dis-
play (ARHUD). This use case displays the advantages
of EARVE while scaling the problem of vehicle vision
from a network perspective.

• We present an evaluation to show that EARVE meets the
performance targets we have defined and that it offers
noticeable performance improvements with reasonable
expenditure in infrastructure.

The rest of paper is structured as follows. In Section II we
present the overall system design. Section III provides the
detailed description of the implementation of an edge server

Device
RSU Vehicle Pedestrian

Access Network
Base Station

Core Network

Cloud (Optional)
Data Center

(Any device on/beside the road which transfer data with base station)

Aggregation Point co-located Tier 2 Edge Server

Tier 1 Edge Serverco-located

Figure 2: EARVE System Model.

in EARVE. Section IV presents the two concrete use cases
we consider in the paper. We give practical details of our
implementation in Section V and present our evaluation in
Section VI. We cover related work in Section VII. Finally,
Section VIII concludes the paper.

II. SYSTEM DESIGN

In this section, we describe EARVE’s design. First, we de-
scribe our proposed architecture for EARVE. We then discuss
the major communication processes and propose a deployment
scheme. Last, we discuss how EARVE can improve privacy
and security in vehicular networks and AR in general.

A. System Architecture

EARVE is defined around three key layers: device, access
network and core network as shown Figure 2. The device
layer includes the vehicles, roadside buildings, infrastructures,
phones of pedestrians and any other devices involved in the
vehicular network. In the rest of this paper, we will call
“client” any object in the device layer that transfers data to
the ES. The access network and core network layers host
the ESes at the core of our architecture. We distribute these
ESes hierarchically in two tiers. The first tier (T1 ES) consists
of ESes co-located with the base stations at access network
level1, while second tier ESes (T2 ES) are co-located with
aggregation points in the core network. Finally, we define an
optional cloud layer to provide on-demand backup capacity.

The ESes communicate with the vehicles and RSUs via the
radio access network, and backs up data with the remote cloud
if necessary (e.g., map updates). T1 ESes operate within an
area defined by the range of their corresponding macrocell
and eventual small cells (see II-C). As they are closer to
vehicles, T1 ESes serve latency-sensitive applications such as
emergency notifications. T2 ESes collect data from multiple
areas (multiple T1 ESes) to provide a larger scale of service
and data backup, e.g., to improve traffic flow by sending cruise
control messages or controlling traffic light.

1Base station in this paper refers to the entity at the edge of the fixed
network, e.g., BTS, eNB and gNB.

B. Communication Process

The communication process of EARVE follows 6 basic
steps: neighbor notification, data processing, transmission,
dissemination, aggregation, and uploading. In order to show-
case this process, we consider an emergency notification
application.
Neighbor notification: Emergency notifications need to be
dispatched to the nearest clients with the lowest possible
latency. The device detecting the emergency sends a detailed
report to the nearest T1 ES. The report compiles the sensor
data at the time of the incident with minimal compression to
avoid losses and reduce processing times. Sensor data includes
image frames, coordinates, velocity and motion direction of
the device to help the ES calculate the coordinates of the
incident.
Data processing: Once a T1 ES receives a report, it processes
the data and caches the extracted information for passing on
to later vehicles. As discussed in [9], sharing the views of
incidents among vehicles is nontrivial. ESes maintain an up-
to-date local map in real time, by collecting data from passing
vehicles. This local map is then regularly synchronized with
a cloud data center. T1 ESes serve as calibration points where
the reported incident is mapped onto absolute coordinates
before notification. ESes rely on machine learning based image
analysis modules for extracting useful information from the
reports. This data is then compared to a predefined rule set
to determine the resulting actions. In the case of emergency
notifications, ES compares the type and severity of the emer-
gency with the rules and triggers the corresponding actions
upon match.
Data transmission: Depending on the severity of the emer-
gency, the T1 ES sends the notification to nearby T1 ESes on
a scale defined by the matching rules. For instance, T1 ESes
located within the same neighborhood are notified of events
that may cause serious congestion.
Data dissemination: The top priority of each ES is to
notify nearby vehicles and pedestrians. An ES needs to notify
different groups of clients according to the triggered rules. For
example, an ES notifies only the nearby vehicles of a ”traffic
congestion” event, while it notifies the nearest vehicles and
pedestrians of a ”severe accident” event.
Data aggregation: T1 ESes send data to T2 ESes for applica-
tions requiring larger amounts of data (only if aggregation is
acceptable to the application). For instance, burst water pipes
may cause severe flooding in multiple blocks. To get the whole
picture, T2 ES needs to aggregate data sent from all involved
T1 ESes within the damaged area.
Data upload: T1 and T2 ESes synchronize with the cloud
to keep city-scale data up-to-date. T1 ESes also forward the
emergency data to cloud for backup. This data may be used
later for deploying new city-scale road security policies.

C. Deployment

Due to the space limitation, we will skip the details of
deployment. Please refer to our previous work for more
details [5].

Device Service
Discovery CommunicationRegistration

Data Management

Device Data

Event Data

Operation
Rules

Export
Distribution

Meta Data

Client Registration

Machine Learning
Object

Detection
Other

Services

Notification
Other services

Figure 3: Edge Server Design.

D. Privacy and Security

V2V communication exposes each vehicle’s private infor-
mation to others. The mobility pattern of a driver is eas-
ily discovered which raises security and privacy concerns.
Anonymization can hide the true identity of the sender, how-
ever, it raises issues in trust in the information shared in V2V
networks. As a result, it is not easy to protect user privacy
while providing trustful information distribution. Our system
provides a preliminary solution for those problems with the
help of ESes. As the information collection and distribution
point, an ES collects data directly from users and distributes it
after removing the private information of the original sender.
As such, users share valuable information while hiding their
identity from the larger public. Besides, our edge service
follows a subscription mechanism, therefore only the users
who trust and willing to use the edge service will share their
information.

III. EDGE SERVICE

In this section, we describe the architecture of the services
deployed at the edge. We first characterize the major data
flows between server microservices. Then, we discuss the
multithreading data process of ES and client device.

A. Server Architecture

To achieve low enough latency, ESes need an efficient data
process flow with only the key microservices. On the other
hand, the architecture needs to remain flexible and allow
adding more microservices in the future. We design our ESes
as shown in Figure 3. This architecture spreads among four
major planes defined as follows:
The Device Service layer is the interface through which the
ES communicates with different devices. Any client in need
of edge service communicates with ES through this layer. At
this layer, the major microservices include Device Discovery,
Registration and Communication.

Discovery

1

2

Registration Meta
Data

value
description

Device
Data

ID, profile

4

4Communication3

5

Event
Data

image,
 video analysis

plain text

Rules

6

Notification

Yes

Other
service

Export

Machine
Learning

Figure 4: Data flow of Edge Server.

• Device Discovery allows the automatic discovery of de-
vices entering the coverage area of the ES. We propose
a subscription model so that the ES only communicates
with the clients willing to use the edge service. The
edge service provider reserves a specific IP address for
service data transmission. Any device demanding edge
services sends its basic information (e.g., ID, profile
and coordinates) to the specific IP address periodically.
The information is included in a message similar to the
“HELLO” packet in OSPF for dynamic discovery of
neighbors. The T1 ES within the base station identifies
the information by filtering the destination IP address and
registers the device. Users can adapt the frequency of
messages and turn it on or off freely. We choose to use
this model to give the user more flexibility in using the
edge service.

• Device Registration generates a unique ID for the
discovered device and asks for its profile and value
description. The device profile is a descriptive file in-
cluding all basic information of the device. This profile is
composed of key-value pairs that describe the parameters
potentially sent by the vehicle. For instance, a vehicle
registers with the following description: {V: velocity,
mile/h; D: motion direction}. Later the same vehicle
going southbound at 30 miles/h will send {V: 30; D:
south}.

• Device Communication transfers data with the device.
The formats of data include plain text and image frames.
The transport protocol is flexible and depends on specific
use cases. In this work, we use UDP for low latency
image transmission. However, for other applications, it
may be needed to develop additional mechanisms to
ensure reliable and ordered transmission while keeping
the low latency requirements.

The Data Management layer analyzes and manages the data
received via the Device Service layer. The major microservices
include Device Data, Meta Data, Event Data and Machine
Learning.

• Device Data stores the basic device data such as UID and
profile for the ES to uniquely identify the device.

• Meta Data stores the values description and other meta-
data.

Timestamp Coordinates Type Data Device ID

Table II: Event entry

• Event Data stores the up-to-date events sent by devices.
The database stores events as unique sorted entries (see
Table II). The entries are organized in multiple levels
and sorted from left field to right field (at the exception
of “Device ID”). We base this ordering rationale on
the scenario where multiple vehicles, pedestrians, and
RSUs witness the same event or accident at the same
time. To uniquely identify the event and ignore the
duplicated reports, the “Timestamp” and “Coordinates”
of the event have the highest priority for sorting. The
“Type” field defines different types of events from normal
map update to a severe accident report. Each event has a
predefined TTL based on its type and gets removed from
the database after expiration. The “Data” field contains all
the key-value pairs from the device report. The “Device
ID” is the unique ID of the sender and not included in
the order of sorting, to avoid duplicated reports of the
same event from different devices.

• Machine Learning analyzes the image frames sent by
devices, extracts the key information and forwards it to
the Event Data microservice. In this work, we integrate
the machine learning algorithm of object detection into
ES, which runs on GPU.

The Operation layer generates rules and applies them to
the event data. The ES triggers a rule’s actions if an event
data matches the rule’s condition(s). The major microservices
include Rules, Notification and others.

• The Rules microservice generates new rules on-demand.
Each rule has one or multiple conditions and actions. The
ES matches each event data entry with the rule set and
triggers its actions in case of a match. Upon detection,
the ES triggers the transmission of notification and the
export of data to neighbor clients. The

• Notification microservice sends out alerts/notifications
to specific clients (groups) defined in the rule(s). For
instance, if the event data contains an anomaly, the
“Notification” service is triggered and the ES sends out
notifications to all devices defined by the rule, e.g., all

vehicles discovered within 5 minutes.
The Export layer is responsible for exporting data to other
ESes (T1 and T2) or the cloud if necessary. The major
microservices include Client Registration and Distribution.

• Client Registration provides the interface for northbound
clients to register to the system. In our system, north-
bound clients include nearby T1 ESes, T2 ESes, cloud
data center and emergency center etc.

• Distribution sends to subscribers the event data based on
the rules or historical statistics for backup.

Figure 4 depicts the major data process flow in the ES,
which includes the following steps:

1) An ES discovers a device entering its coverage area.
2) The server registers the device and stores its basic

information. The necessary information includes UID
of device (generated by the ES), device profile (brief
description of the device) and value description (key-
value pairs to explain the meaning of value possibly sent
by the device). The UID and profile of the device is stored
in the Device Data microservice while value description
is stored in Meta Data.

3) The ES communicates with the devices via the Communi-
cation microservice. It identifies each device by matching
the device information with the corresponding Device
Data. The ES allows a device to send plain text and image
frames to report on different kinds of events.

4) Upon receiving plain text, the ES extracts the event
data directly from the text and stores it. Upon receiving
image frame, the ES analyzes it through machine learning
algorithms and extracts the event data. In this paper, we
only focus on one application of image processing: object
detection.

5) After extracting the event data, the ES matches it with the
rules and eventually triggers the corresponding actions.

6) The actions include notifications to vehicles, pedestrians
or emergency centers, propagation to nearby ESes and
cloud backup etc.

IV. AUGMENTED REALITY APPLICATIONS FOR
VEHICULAR NETWORK

In this section, we describe the details of an AR application
realized by V2E to showcase EARVE. We select an in-vehicle
IoT device (e.g., HUD, smart rearview mirror) as our client
device, and assume there is a T1 ES nearby the vehicle client
and needs to provide object detection services.
View Share: To detect objects and achieve augmentation of
the views, the client periodically uploads the sensor data and
captured image frames to the ES, including the current street
view image from the camera, GPS coordinates of the vehicle
from the GPS receiver, the orientation of the vehicle from
the IMU, and the timestamp. Together with the IoT device’s
IP address, the {camera image, GPS, orientation, timestamp,
IP} tuple is the major input of our system. Upon receiving
the sensor data, the ES first executes object detection on the
camera image with the object detector. With state-of-the-art

deep learning frameworks and GPU hardware acceleration, the
object detector is able to detect objects in real time. For each
detected object, a rectangular boundary is also given by the
detector.

With the object detection results, the ES calculates the GPS
coordinates of the detected objects. The first step is calculating
the relative positions of the objects from the vehicle. For each
object, we choose the middle point of its bottom boundary
as its position in the camera image. We need to transfer
this position in pixels into position in meters, which is the
object’s position in the real world. To achieve this, we change
the perspective of the camera image so that the new pixels
correspond to the bird’s-eye view from the top of the street.
With the object’s 2D position in the bird’s-eye view image, we
can calculate the object’s relative position (both distance and
direction) from the vehicle in meters after some calibration.
With the vehicle’s GPS information, the ES calculates the GPS
for each detected object. Then all information is extracted as an
event entry embedded into Event Data database. ES processes
the data, applies the corresponding rules, and sends back
{timestamp, object name, object GPS} tuples to the clients
specified by the rule’s actions. When the client receives the
message from the ES, it displays the detected objects in a
manner of AR. With the object’s GPS, the vehicle’s GPS and
orientation, the client is able to calculate the relative position
(both distance and direction) of the object from itself. This
relative position is transformed into 2D on the screen after
perspective and unit transformation. With this design, drivers
are able to see the objects that are hidden by front vehicles in
real-time in an AR manner.

V. IMPLEMENTATION

In this section, we describe the implementation details of
our system. We follow the use case described in the previous
section and develop a simple object recognition system for
vehicles. This system detects pedestrians and cars on pictures
sent from the client device’s embedded camera and returns the
results in real-time. Our client is implemented on the Android
platform, simulating the hardware and software environment
of the vehicular equipment for augmentation. The GPS sensor
reports the GPS coordinates of the vehicle, and the monoc-
ular camera captures the front-facing view from the vehicle.
OpenGL is utilized for rendering the augmented information
on top of the camera view. The communication between client
and server is based on sockets with all the information packed
in our own formats. The plain text and image frames sent
by the client, as well as the message sent by the server, are
transmitted over UDP socket for low-latency transmission.

Our server is deployed on a Linux platform. For object
detection, we utilize the GPU implementation of YOLO
version 3, which is the state-of-the-art object detector. We
use OpenCV for general image processing like perspective
transformation (from one vehicle’s to another one’s). For ES
implementation, we build our prototype on top of EdgeX
Foundry project, a vendor-neutral open source framework for
IoT edge computing [10]. We use EdgeX as the skeleton

framework with proper adaption and add more microservices
to build the ES for EARVE. For instance, to have the best
knowledge of up-to-date events, we change the database
maintenance mechanism of Event Data to multi-level uniquely
sorting. We add the device discovery microservice and tune
the communication module by adding UDP socket method.
Moreover, we integrate machine learning modules into the ES
architecture to improve its data analysis ability.

VI. EVALUATION

We built a proof-of-concept system and now present our
evaluation. To emulate an in-vehicle IoT device, we installed
our client on a Xiaomi Mi5 smartphone, with a 2.15GHz quad-
core Snapdragon 820 CPU and 4GB of memory. Our ES is
deployed on a local Linux PC, with a six-core i7-5820K CPU,
64GB of memory, and an Nvidia GTX 1080Ti GPU. The
hardware specification of our ES is similar to a medium-priced
edge server in 2018 [11]. To compare the benefits of EARVE
to cloud computing, we create a virtual machine instance on
the Google Cloud platform, with 6 vCPUs, 16GB of memory,
and an Nvidia K80 GPU. The phone is connected to the
Internet through a WiFi access point on the ES. As such,
our ES deployment works also as a “base station” from the
perspective of the phone client, which follows our deployment
proposal, namely co-locating ES with the base station.

The RTT from the phone to the ES is 6.84ms, and the RTT
from our ES to the Google cloud virtual machine is 28.76ms.
More than 90% vehicles driving at 100 km/h have only 7.6
milliseconds RTT in LTE network [12]. Besides, vehicles
normally drive much slower in urban areas, therefore our
evaluation setup represents a realistic LTE vehicular network
approximation. The measurements shown in Table I are also
in line with our setup’s ES-to-cloud RTT. Although being
an indoor evaluation, our setup is close to vehicle networks’
reality and validated for testing performance in real scenarios.

A. ES placement

To address the ES placement problem, we consider the base
station and traffic distribution patterns in central London. The
selected area has a size of 3.91km * 5.75km. For this area, we
use public LTE base station location data2 and traffic volume
data3. We cluster the traffic volume data according to its GPS
coordinates and divide the selected area into 7 small areas
according to the clustering result. The traffic distribution and
area partition results are shown in Figure 5. Each colored
dot represents the location of the aggregated traffic, with size
proportional to the traffic volume in 12 hours during daytime.
In each area, we display the number of deployed ESes, and
average and the peak traffic volume. We evaluate both cases
to have a better understanding of ES placement’s influence on
system performance (see subsection VI-C).

We then analyze the relationship between the base station
distribution and the traffic density, as it influences our co-
located ES placement. There are 3455 LTE base stations

2https://unwiredlabs.com
3https://data.gov.uk/dataset/gb-road-traffic-counts

ES#: 6~8

ES#: 6~8

ES#: 7~10

ES#: 13~18

ES#: 1~2ES#: 11~14

ES#: 3~4

Figure 5: ES placement based on traffic heatmap

Figure 6: LTE base station (in red, the ones with coverage >
3000m) distribution in the selected area of London.

located within this area, among which 81 base stations cover
more than 3000m, comparable to a macrocell. We plot these
“macrocells” in red and the others in blue, as shown in Fig-
ure 6. The base stations are distributed evenly and reasonably
match the amount of traffic in dense areas. As a result, using
base stations as deployment points is not going to deviate the
ES placement from the actual traffic patterns. The maximum
number of ESes needed to meet the user demand during peak
traffic is 64. Thus, we deploy ESes within the macrocells
which are closer to the location of the aggregated traffic.

B. AR Applications

We then carried out experiments into the data processes in
our representative AR application: View Share. We ran the
application using ES and cloud for 1s (View Sharing) over
100 runs and measured the step by step latencies. Each run
includes the entire integrated workflow of the application (see
section IV). The result is shown in Figure 7.

The total latency for View Share can be divided in the
following segments: Client Data Collection, Uplink Latency,
Object Detection, Policy Control, Downlink Latency and Client
Rendering. As Figure 7 shows, View Share with ES is 32.9ms
faster than with the cloud. Due to the hardware difference, al-
gorithms run slightly faster on ES than on cloud. Nevertheless,
the sum of uplink and downlink latencies decreases by 21.7ms,
which contributes to most of the improvement. This represents
a 20% improvement over cloud computing, with an overall
latency under 100ms. This proves our core assumption that
edge computing can significantly improve latency-sensitive
workloads by performing data processing closer to the user. It

6.7

6.7

8.9

20

52

63

1.2

1.4

6.4

17

17

17

w/ ES
(92.2 ms)

w/ Cloud
(125.1 ms)

Client Data Collection Uplink Latency Object Detection
Policy Control Downlink Latency Client Rendering

Figure 7: View Share Latency Decomposition.

80

90

100

110

120

130

140

7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 V
ie

w
 S

h
ar

in
g

D
el

ay
 (

m
s)

Time (hour)

0 20% 40% 60% 80% 100%

Figure 8: Average latency in different time periods for various
load distribution between ES and cloud (100% is Edge only)

also addresses part of our second challenge (section I): edge
computing improves AR application in vehicle networks, on
the granularity of single workflows.

C. Scalability

To evaluate the scalability of our system, we test the
bandwidth requirements and average latency for different
vehicle traffic densities. We reuse the setup described in
subsection VI-A. We select traffic data from 7am to 6pm (12
hours), during which the number of passing vehicles increases
from 8262 to 14494 and has a peak at 6pm. Each ES has a
coverage area of 3km, similar to its co-located macrocell. The
average vehicle speed is 36km/h (10m/s). Each vehicle spends
on average 5min within the coverage area of a given ES. The
public dataset we used only contains vehicle count per hour.
Here we build a vehicle distribution model based on Normal
distribution. In our experiment, we use 5 minutes (300 s) as
the cycle of this normal distribution, with a mean of 150 s and
variance of 150 s, and the same pattern repeats 12 times for an
hour. For every 5 minutes, the number of vehicles within the
coverage of ES changes with time, as the first-appear time and
the speed of these vehicles vary. Each vehicle sends captured
images continuously to the nearest ES or cloud at 30 fps. Out
of the 30 frames per second, the first frame is 960 x 540
pixels (51.8 KB) which is used for object detection.

In Table 3, we display the minimum and maximum
bandwidth requirements of our demo application over the

Device Edge Server Cloud Server
Min 0.0581 MB/s 2.89 MB/s 184.9 MB/s
Max 0.0581 MB/s 5.07 MB/s 324.5 MB/s

Table III: Minum and Maximum bandwidth requirements at
device, edge and cloud level for EARVE during a day.

day.During peak hours, a cloud server running such operations
would require more than 2.5 Gb/s for a single software. On the
contrary, when using edge server, the load at the co-located
base station is around 40 Mb/s with 0.465 Mb/s per device,
which is achievable on LTE networks, and considerably relaxes
the overall load at the bottleneck (up to 98%).

Next, we test the delay of the AR application, under
different ES deployments and traffic densities along the 12
hours. As shown in Figure 8, we tested 6 ES deployments
with different numbers of ESes. The different deployments
are defined by the ratio of “summation of edge capacity” to
“overall demand”. The definition of “edge capacity” depends
on specific service provisions. For instance, the period (T) of
object detection is 1s. Then a single ES has capacity calculated
as follows,

Cobject = T/delay = 1000(ms)/52(ms) = 19

which means an ES can process 19 tasks of object de-
tection (on GPU) within the corresponding period, paral-
lelized. Based on this definition, we defined following ES
deployments. “0” is the pure cloud solution without any ES
deployment, and we extend the cloud server resource to make
it capable of fulfilling all the requests (provides the optimal
performance for a cloud solution, to be compared with ES
solutions). “100%” is the pure edge solution when the overall
capacity of deployed ESes can fulfill the peak demand on
average, e.g., there are 14494 passing vehicles during the hour
around 6pm in the area, the average number of object detection
tasks received by each ES during this hour is 1200 per second,
which is calculated as follows:

Nr/ES = ∆Nv ∗ T ∗ f = 14494/3600 ∗ 300 ∗ 1

where ∆Nv is the incremental number of discovered vehicles
per second, T is the time a vehicle crosses the coverage of
an ES, f is the request frequency. In this particular hour, it
requires 64 ESes (1200/19) to fulfill the average demand (as
shown in Figure 5). With this setup, pure edge solution can
fulfill most requests during the peak hour, except for those
peak time points when significantly more than the average
number of vehicles sending requests simultaneously. The
other deployments are mixtures of edge and cloud solutions,
where ESes can fulfill specific percentages of the requests
and forward the rest to the cloud, e.g., “80%” represents
when deployed ESes can fulfill 80% of the requests and
the rest 20% are sent to the cloud. The result in Figure 8
shows that deployments with more ESes have lower delays.
Comparing with the pure cloud solution, the pure edge solution
decreases delay by 32ms for View Sharing in most periods,
while the others also decrease delay at different levels. “80%”
deployment gets similar delays with the pure edge solution.

In summary:
1) Our ES placement proposal follows the practical traffic

and base station distribution.
2) EARVE improve the AR applications in vehicle networks

by decreasing the transmission latency.
3) EARVE is scalable and performs well in different traffic

densities. It can also be combined with cloud solutions
to optimize the costs.

VII. RELATED WORK

Emerging technologies enable various functions for autono-
mous vehicles but also bring new challenges.
Network protocols: Direct Short Range Communica-
tion (DSRC), Device to Device (D2D) and 5G, improve data
transmission [6]–[8]. However, the large volumes of data will
challenge current computation resource deployments and risk
making them bottlenecks [13]. In this paper, we focus on V2E
communication and select LTE as the network protocol. The
rationale is straightforward, it accords with our scheme that
ESes are co-located with base stations. Moreover, the major
network workloads of our system and AR application, are
image transmission and notification broadcast (or multicast
depending on the rules). LTE outperforms DSRC in both
workloads because of its longer coverage range and throughput
performance, as shown in work [14].
Edge Computing: Edge computing to bring computation
close to the user has attracted attention, such as [15] which
explores integration of 5G, SDN, MEC and vehicular network.
Uncoordinated strategies for edge service placement have been
investigated in [16] and the results have shown that they work
well for this problem. Meanwhile, the fundamental issues, i.e.,
architecture design, communication process, network protocols
and implementation concerns are yet to be explored.
Applications: Efforts on developing vehicular applications
have achieved some results [9], [17], but without improvement
from system and networking point of view, those applications
face difficulties to scale in realistic situations.

VIII. CONCLUSION

In this paper, we present EARVE, an architectural frame-
work for vehicle-to-edge applications. Our system exploits the
low latency of Edge servers to provide real-time emergency
detection and notification. Thanks to its layered architecture,
EARVE provides servers at street, neighborhood, and city
that allow for a variety of usages at different scales in time
and space. EARVE also presents the advantage to be mostly
agnostic to the network and the hardware of vehicles and
offloads most of the computations to ESes. To validate the
concepts behind EARVE, we build a prototype application that
we evaluate through both simulations and real-life conditions.
Using real traffic data from London, we show that EARVE
improves vehicular network significantly with reasonable re-
quirements in terms of number of installed edge servers. Our
evaluation results show that, compared to cloud solutions,
EARVE decreases the latency of AR applications in vehicle
newtorks, e.g., 26.3% for View Sharing. We also investigate

the scalability of EARVE and show that it decreases latency
in realistic scenarios for different traffic densities. We test
mixed edge and cloud solutions and find out that more ES
deployments bring larger improvements. In a word, EARVE
is an efficient V2E solution which improves the performance
by decreasing user latency and reducing network traffic.

REFERENCES

[1] THEVERGE, “California green lights fully driverless cars for
testing on public roads,” 2018, accessed 2018-06-15. [Online].
Available: https://www.theverge.com/2018/2/26/17054000/self-driving-
car-california-dmv-regulations

[2] CHINADAILY, “Shanghai allows autonomous tests,” 2018,
accessed 2018-06-15. [Online]. Available: http://www.chinadaily.com.
cn/business/motoring/2017-11/13/content 34469664.htm

[3] M. Faezipour, M. Nourani, A. Saeed, and S. Addepalli, “Progress and
challenges in intelligent vehicle area networks,” Communications of the
ACM, vol. 55, no. 2, pp. 90–100, 2012.

[4] M. Gerla, E.-K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” in Internet
of Things (WF-IoT), 2014 IEEE World Forum on. IEEE, 2014, pp.
241–246.

[5] P. Zhou, W. Zhang, T. Braud, P. Hui, and J. Kangasharju, “Arve: Aug-
mented reality applications in vehicle to edge networks,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications. ACM, 2018,
pp. 25–30.

[6] A. Nordrum, “Autonomous driving experts weigh 5g cellular network
against dedicated short range communications,” IEEE Spectrum, Cars
That Think, 2016.

[7] MOVIMENTO, “Connected car battle lines are drawn between 5g and
dsrc,” 2018. [Online]. Available: https://movimentogroup.com/media-
coverage/connected-car-battle-lines-drawn-5g-dsrc/

[8] Alessio Filippi, Kees Moerman, Gerardo Daalderop, Paul D. Alexander,
Franz Schober, and Werner Pfliegl, “Ready to roll: Why 802.11p beats
lte and 5g for v2x,” 2016.

[9] H. Qiu, F. Ahmad, R. Govindan, M. Gruteser, F. Bai, and G. Kar,
“Augmented vehicular reality: Enabling extended vision for future
vehicles,” in Proceedings of the 18th International Workshop on Mobile
Computing Systems and Applications. ACM, 2017, pp. 67–72.

[10] T. L. Foundation, “Edgex foundry,” 2017. [Online]. Available:
https://www.edgexfoundry.org/

[11] DELL, “Poweredge c4130 rack server optimized for gpus and
co-processors,” 2018. [Online]. Available: https://www.dell.com/en-
us/work/shop/povw/poweredge-c4130

[12] Q. Xiao, K. Xu, D. Wang, L. Li, and Y. Zhong, “Tcp performance over
mobile networks in high-speed mobility scenarios,” in Network Protocols
(ICNP), 2014 IEEE 22nd International Conference on. IEEE, 2014,
pp. 281–286.

[13] T. Braud, F. H. Bijarbooneh, D. Chatzopoulos, and P. Hui, “Future
networking challenges: The case of mobile augmented reality,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), June 2017, pp. 1796–1807.

[14] Z. Xu, X. Li, X. Zhao, M. H. Zhang, and Z. Wang, “Dsrc versus 4g-lte
for connected vehicle applications: a study on field experiments of vehic-
ular communication performance,” Journal of Advanced Transportation,
vol. 2017, 2017.

[15] X. Huang, R. Yu, J. Kang, Y. He, and Y. Zhang, “Exploring mobile edge
computing for 5g-enabled software defined vehicular networks,” IEEE
Wireless Communications, vol. 24, no. 6, pp. 55–63, 2017.

[16] O. Ascigil, T. K. Phan, A. G. Tasiopoulos, V. Sourlas, I. Psaras, and
G. Pavlou, “On uncoordinated service placement in edge-clouds,” in
Cloud Computing Technology and Science (CloudCom), 2017 IEEE
International Conference on. IEEE, 2017, pp. 41–48.

[17] H. Kim, X. Wu, J. L. Gabbard, and N. F. Polys, “Exploring head-up
augmented reality interfaces for crash warning systems,” in Proceedings
of the 5th International Conference on Automotive User Interfaces and
Interactive Vehicular Applications. ACM, 2013, pp. 224–227.

