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Abstract
Edge computing paradigm has been proposed to support
latency-sensitive applications such as Augmented Reality (AR)/
Virtual Reality(VR) and online gaming, by placing comput-
ing resources close to where they are most demanded, at the
edge of the network. Many solutions have proposed to de-
ploy virtual resources as close as possible to the consumers
using virtual machines and containers. However, the most
popular container orchestration tools, e.g., Docker Swarm
and Kubernetes, do not take into account the locality aspect
during deployment, resulting in poor location choices at the
edge of the network. In this paper, we propose an edge de-
ployment strategy to tackle the lack of locality awareness of
the container orchestrator. In this strategy, the orchestrator
collects information about latency and the real-time resource
consumption from the current container deployments, pro-
viding a bird’s-eye view of the most demanded locations and
the best places for deployment to cover the largest number
of clients. We evaluated the proposed model using 16 AWS
regions across the globe and compared to the standard de-
ployment strategies. The experimental results show our edge
strategy reduces the average latency between serving con-
tainer to the clients by up to 4 times compared to the standard
deployment algorithms.
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1 Introduction
Smartphones bring a broad variety of applications to the
end user including online gaming, image recognition, video
streaming, and other interactive applications. However, those
devices are not always well suited to all range of applications
due to their limits on the amount of processing, storage, and
battery. Solutions like offloading tasks to the cloud [8] were
proposed to alleviate this problem, but they are not applicable
for delay-sensitive applications such as online gaming and
augmented reality (AR) and virtual reality (VR), which depend
on low network latency and high bandwidth to operate seam-
lessly. To even aggravate the situation, the Internet is going to
have even more pressure on the bandwidth: according to [6],
there are currently 4.3 billion smartphone subscriptions, and
the mobile data traffic has grown 54% since last year. By 2023,
it is expected there will be 3.5 billion IoT connections and
over 1 billion 5G subscriptions where 20% is going to be all
mobile data traffic. This expected growth will put a lot of
pressure on the cloud services in order to meet the increasing
delay-sensitive applications.
The edge computing paradigm has been discussed as an

emerging solution for low latency applications. At the core
of the concept, the main idea is to bring the computing re-
sources closer to where the users are, at the edge of the net-
work, reducing the latency to the end-users and the transit
bandwidth consumed in the path. This concept has been ex-
plored previously [7], and some solutions were proposed, e.g.,
Cloudlets [13] and Foglets [14] and even a small cluster of
limited devices [9]. Many studies have already shown the
benefits of edge computing, e.g., [15, 17] and most proposed
solutions use some kind of virtualization, either virtual ma-
chines [13] or containers [11, 16] in their solutions. Despite
the fact of both virtualization and containerization are used
as a technological option to deploy edge networks, it is sel-
dom discussed how they are used to deploy and orchestrate

1

https://doi.org/10.1145/3366614.3368101
https://doi.org/10.1145/3366614.3368101


MECC ’19, December 9–13, 2019, Davis, CA, USA Wong, et al.

multiple virtual machines and containers at the edge of the
network. The standard deployment of container management
frameworks such as Docker Swarm [2] and Kubernetes [5]
do not take into account the locality issue, which is a critical
part and one of the main drivers of deploying at the edge. One
of the issues is that the container management systems were
built to be run in datacenters rather than at the edge of the
network, thus, locality is not that critical as all containers run
in the same datacenter site. However, the impact of a poor
location selection can result in a high impact on the latency
to end-users at the edge.
In this paper, we present a new scheduling strategy for

container orchestration called edge scheduling strategy (ESS).
The ESS edge scheduling strategy aims to assist the container
orchestrators to take a better decision on where to deploy
containers by taking additional metrics such as response time
or underlying network latency as input for the deployment
decision. ESS adds two new components to the Docker Swarm
scheduling process, the classification and the edge scheduling
steps. The classification component is responsible for going
through all container deployment requests and prioritizing
them according to the metrics defined by the user. The edge
scheduling component is responsible for receiving monitoring
information and scheduling containers to be deployed in the
best available location closer to the user. The benefits are
twofold: first, it prioritizes requests that are most sensitive to
the user according to the metrics defined previously, e.g., the
user can define that she wants to scale out the next container
where there is more demand; and second, the latency between
the client and the node where the container is deployed to
is going to be the lowest possible. As a result, the proposed
model will always allocate the containers as close as possible
to the end-user in the edge of the network.

We implemented a prototype of the proposed ESS schedul-
ing strategy and monitoring components and evaluated them
against the standard deployment strategies on Docker Swarm
in two scenarios: (i) average latency vs. deployment strategy
and (ii) percentage of requests that was addressed in the low-
est latency possible. The experimental results show that (i)
the overall latency using the new strategy is up to 5 times
lower than other strategies in the best scenario and (ii) the
percentage of requests handled in the lowest latency possible
(under 25ms) is 50% higher compared to other strategies.

2 Background
The container lifecyclemanagement is composed of two phases:
(i) selection phase and scheduling phase. First, all scaling re-
quests are placed in a FIFO queue. Then, in the selection phase,
Docker Swarm selects all nodes that meet the user resource
requirements, e.g., CPU, memory, storage, and places in a
node candidate list and passes it to the filtering phase. Upon
completing the filtering phase, Docker Swarm has a list of can-
didates to where the containers can be deployed and applies
one of the following container deployment strategies to place

containers: binpack, the scheduler will select the most loaded
node from the list to place the container; spread, the scheduler
will select the node with the least number of replicas of the
container; and random, the scheduler will randomly pick one
node to deploy the container.

Although these strategies offer some flexibility for the user
to choose where to deploy the container, they are limited to
provide the best deployment location in the context of edge
computing. For example, consider a multiplayer game with
low-latency requirements (e.g., AV/VR based) at the edge of
the network, and it needs to scale in order to keep up with the
increasing number of users at the edge. If the developer selects
spread, the container with the application will end up in a
different location as the policy is to provide high-availability. If
the developer selects binpack, the container will be deployed
in the busiest location, but we cannot assume that at that
moment the player is in the busiest location.

We list the following reasons for those limitations: first, the
main aim of those strategies are either (i) minimize costs by
reducing the number of running nodes (binpack) or (ii) avail-
ability to have multiple replicas of the same service (spread).
Second, those deployment strategies were devised in the con-
text of running in datacenter, where the locality component
is not a problem as all nodes will be running in the same data-
center site or region. Third, all container scheduling requests
are placed in a FIFO queue, thus, the containers are deployed
based on the arrival order without any classification or prior-
itization of the requests. Although the user can request the
Docker engine to place certain containers to selected loca-
tions, it is done manually with labels, and not automated and
as part of the scheduling and deployment strategy. In contrast
to the current deployment strategies, we propose a mecha-
nism to take the locality and classification of the request as
input for the deployment decision for the edge networking,
which we will describe in the next section.

3 System Design
In this section, we present the ESS strategy to assist the Docker
container orchestrator in overcoming the current limitations
on the edge deployment. The first add-on to the scheduler is
the classification component shown in Fig. 1. This component
is responsible for receiving all scaling requests and ranking
them according to the user metrics. The ranking process starts
with the definition of metrics to be used as criteria by the
user, e.g., CPU level or latency between server and client,
then retrieving the container’s monitored metric and, lastly,
ordering them according to the metric defined previously.
The second component is the edge scheduling, and it is re-

sponsible for selecting the closest available locations to the
clients to deploy containers. This component periodically
probes the Swarm nodes to get the relative latency between
the cluster nodes and stores the information in a neighbor
table. The neighbor table contains a list of all nodes and the
corresponding latency to each other node, sorted by the lowest

2



Container Deployment Strategy for Edge Networking MECC ’19, December 9–13, 2019, Davis, CA, USA

Figure 1. Docker container creation pipeline.

latency (closest neighbor) to the farthest. During the sched-
uling step, the edge scheduler will select the node’s location
that is closer to the client to deploy a container. However, in
case the node is already full, it will look at the neighbor table
to get the second closest node to the original location and so
forth. Therefore, the scheduler will always try to deploy to the
closest available location to the client based on the latency.

Algorithm 1: Container deployment strategy
1 Input:Multiple scaling out request for apps
2 for each scaling request for appi do
3 metrici ← Get monitoring metric for appi
4 ordered_app_list← sort(get_app(metrici ))
5 ordered_location← sort(ordered_app_list)
6 selected_node_list← get all nodes from the Swarm

cluster
7 filtered_node_list← filter(selected_node_list)
8 not_deployed_container← True
9 while not_deployed_container do
10 candidate_list← ordered_location ▷◁

filtered_node_list
11 for each locationi in candidate_list do
12 if container_counti < node_limiti then
13 Deploy container at locationi

not_deployed_container← False
14 break

15 else
16 for each neighborj in neighbor table do
17 if container_countj < node_limitj then
18 Deploy container at neighborj

not_deployed_container← False
break

Algorithm 1 shows all steps involved in the scaling out
process. First, the classifier component receives all scaling
out requests and holds up for t seconds. This time is set to be
equal to the cluster resource monitoring and at Docker Swarm
is set to 15s. The withholding interval is defined as the same as
the monitoring interval, and the default value is set to 10s. For
each incoming request, the classifierwill query themonitoring
database to get the metric defined by the user and sort it from
the most to the less violated compared to the base metric
(steps 2-4). After that, it will get the container list and the

underlying node list that has the application with the violated
metric (ordered_location) (step 5). Then, the request goes to
the usual select and filter phases from Docker until it reaches
the edge scheduler component (steps 6-8). This component
gets the list of nodes with most metric violations and executes
an inner join with the filtered list from Docker (step 11) and
sends it over to the container scheduler to deploy the container
at that location (step 12-15). In case the preferred location is
already full, it will use the neighbor table to find the ordered
list of locations to deploy the container (steps 17-20).

4 Implementation
Fig. 2 shows the implementation components of the ESS strat-
egy, dividing into the monitoring and scheduling subsystems.
The monitoring system has three components cAdvisor[3],
Prometheus[4] and AlertManager[1]. cAdvisor is a data col-
lecting tool from Google to collect both container and host
information. Under the hood, it is a daemon that collects all
stats such as CPU usage, networking, and storage from all
containers and also machine-wide and parses it to be exported
to Prometheus. Prometheus is a monitoring tool that collects
resource data from all monitored endpoints and applies a set
of user-defined rules on them, such as triggering alerts in
case some metrics are passed through. The last component is
AlertManager, which main goal is to aggregate and hold back
a series of alerts triggered by the same event, e.g., degraded
response time due to service overload. Prometheus will re-
ceive this information and send a continuous series of alerts
informing that this given threshold has been broken. Without
the AlertManager filtering, these alerts will trigger multiple
scaling out requests for the same root cause and also without
giving time for the system to react to the scaling process.

In the scheduling subsystem, the classifier component peri-
odically queries the Prometheus database for usage metrics
and keeps a sorted list of container locations with more re-
quests in memory. The query period is set to be the same as
the monitoring system (in our case, the default is 10s) so the
component can keep the last data delayed by only 10 seconds
and the overhead be low. The edge scheduler component pe-
riodically queries the nodes to retrieve the relative latency
between each node and populates the neighbor table.

5 Evaluation
Fig. 3 shows the AWS inter-region latency (in milliseconds).
The latency was collected by pinging each public endpoint on
the AWS Dynamo database for over 1 month, and the average
latency was taken. For all evaluation, we used 16 VMs to
represent each AWS region and used Docker Swarm to cluster
the nodes together. The AWS machine size was t2.micro with
1 vCPU and 1 GB of RAM. On the application level, we used
a Docker image containing an HTTP server to be served as
an endpoint for our data retrieval and latency computation
experiment. The image required 35 MB of RAM to run, and
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Figure 2. Implementation design of edge strategy with the
classifier and edge scheduler components.

each AWS VM could handle up to 30 containers (each VM had
1 GB of RAM). At the beginning of the experiment, one HTTP
container application would be randomly deployed at one
of the Docker cluster nodes. As more client requests arrive
at the serving container, the monitoring system will detect
the application overload (e.g., high CPU usage) and trigger
Docker daemon to scale out and deploy a new container. The
container deployment location is going to be based on the
configured deployment strategy, e.g., binpack, spread, etc.
In the subsequent experiments, we used between 4 to 16

regions on AWS as the source region of the clients. The choice
of the client region follows the gravity model[12] which states
that the network traffic generated between two regions is pro-
portional to the population of each region. We used Internet
user demographics data1 as a parameter to the probabilistic
distribution to select one of the given AWS regions. Regions
with higher population density have a higher probability to
be chosen.

5.1 Experimental Evaluation
In the first experiment, we measured the latency using differ-
ent deployment strategies shown in Fig. 4. The aggregated
latency was calculated by getting the latency between each
client to the serving container region on AWS and getting the
90th percentile of the measured values. The experiment was
run 1,000 times, and the 90th percentile was calculated for
each strategy. The results show that for a filling of for 25%,
50% and 75% in the Swarm cluster, the gains were 300%, 100%
and 30% of improvement in the scenario with only 4 client

1https://www.internetworldstats.com/stats.htm

Figure 3. AWS Inter-region latencies (in ms). Rows repre-
sent the source AWS region, and columns are the destination
regions.

regions, respectively. The gains increase with the number of
clients as the probability of a client falling in the same region
as the server increases with the number of regions.

The results show the aggregated latency is smaller using the
edge strategy and the reasons are twofold: (i) ESS will select
the best available AWS region to deploy the container (or any
options in the neighbor list) reducing the overall latency and
(ii) the edge strategy responds to the number of clients rather
than being static as the other strategies. The latency curve
also increases slowly due to the neighbor table as it provides
the closest available locations to the client. Moreover, the
aggregate latency in ESS also drops with the increase in the
number of client regions because the fraction of the clients
served with the best option is weighted by the number of
clients. For the scenario with only 1 client region, the latency
of edge strategy will also converge to the same value of the
other strategies as the Swarm capacity is full.
The second experiment shows the latency distribution of

all client requests vs. the scheduling strategy. The goal is
to understand what ratio of the traffic is handled with low
latency for each scheduling strategy. The experiment was run
1,000 times, and the data was divided into the intervals shown
in Fig. 5. ESS is able to handle up to 27% of all requests within
25 ms with 4 client regions while the other three strategies can
only handle up to 9% of all requests. This result is expected
as the ESS strategy selects the most popular and closest node
to the client. In addition to that, the percentage of requested
handled within 25 ms increases with the number of clients
due to the higher probability of a given client region being
served in the same region by a container as the edge strategy
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Figure 4. Client to server latency (90th percentile) vs. container deployment strategy. Vertical lines show the Swarm filling
percentage.

Figure 5. Latency distribution vs. deployment strategy. The edge strategy is able to handle more requests with low latency
compared to the other algorithms due to the most frequently requested location metric.

spreads the containers following the client request pattern. In
that scenario, edge strategy handles 37%, 43% and 46% for 8,
12 and 16 clients respectively. In the best scenario, the edge
strategy can outperform by up to 5 times compared to the
other algorithms. Comparing the percentage of traffic that
different strategies can handle under 100 ms, the edge strategy
can cover up to 40% (or up to 50% if more than 8 clients) while
all other strategies can cover only up to 20% of the requests.
Note that the tests on AWS regions aim to get the latency

between the regions to be used as a benchmark for our evalua-
tion. Although the inter-region latency on AWS will be higher
compared to a real edge deployment, we are only interested
in the ratio between the inter-region latency to be used as
input for the deployment algorithm comparison. We do not
expect edge deployments to be done purely in the cloud, but
use these numbers as indicative of the inter-region latencies.

6 Related Work
Kubernetes [5] scheduler starts selecting the set of feasible
placements, which are the nodes that meet a set of resource
constraints (e.g., CPU,memory requirements). Next, the sched-
uler filters the previous list to get the set of viable place-
ments, which is the set of feasible placements with the highest
score. Kubernetes adds the concepts of taints, toleration and

affinity/anti-affinity in the node and pod selection. The main
idea about taints and tolerance is to indicate to the scheduler
that if a given node has already been tainted with a heavy-
processing application such as Apache Spark, it will repel
other heavy-processing applications that have a low toler-
ance to it. On the other hand, if a user wants to explicitly
indicate that some pods should be together for performance,
she can use affinity (or anti-affinity) to indicate to the sched-
uler that a given pod has an affinity to pods of the same type
or class. Comparing Kubernetes to Docker Swarm and our
approach, they work very similarly in the first phase (selec-
tion and filtering). However, Kubernetes does not support
prioritization among multiple scaling requests and not take
into account the client location to deploy the new pods (the
assumption is that they will run in a data-center rather than
as a distributed system).

Apache Mesos [10] supports both task and container sched-
uling, and it uses a two-level scheduling strategy to allocate
resources. In the first level, Mesos manager retrieves all re-
sources available onMesos slaves and creates a unified view of
the resource pool. This resource abstraction layer can be par-
titioned among different upper-level frameworks that are run-
ning on top of Mesos, such as Apache Hadoop and Marathon.
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In the second level, the application-level scheduling frame-
work schedules all tasks based on the application level policies
to where to allocate and run the tasks. Compared to our work,
the Docker Swarm has a similar role as Apache Mesos, where
it gathers all resources from the nodes and provides a uni-
fied view on that. However, at the container scheduling step,
Docker Swarm is directly responsible for scheduling and allo-
cating containers to nodes, while Mesos outsources it to the
upper framework to handle that.

7 Discussion
In this paper, we presented an orchestrator that can (i) priori-
tize requests and (ii) allocate containers to the closest region
to the client as possible in the edge of the network. The main
contribution of this paper is to provide a new orchestrator for
Docker framework which is location-aware, i.e., the Docker
orchestrator to take the scheduling decision based on locality
and to be close to the consumers in the edge of the network.
Unfortunately, current container orchestrators (Docker, Ku-
bernetes, and Mesos) are not location-aware and just deploy-
ing containers in the wild for edge networks will result in
poor performance as they may place far from the users.
The second takeaway from the paper is that a poorly con-

figured container scheduler can end up scaling resources far
from themost demanded region. In a scenario where the client
region has a data-center deployed, it makes more sense to
deploy directly to the cloud rather than having a closer edge
deployment with a scheduler that can send your application
container far away from the client (unless of course if all la-
tency in the edge deployment in that region is lower than the
latency to the cloud in the same region).
Finally, ESS’s deployment algorithm can use optimization

techniques to provide even a better solution for edge place-
ment. In the ESS design, we chose for fast response time as
we expect that production system to have thousands of nodes
while optimization techniques usually run in the order of
minutes. We believe that the optimization values can be in-
putted to our system offline, thus, giving the scheduler better
parameters and historical data to deploy future containers.

8 Conclusions
This paper presented the ESS edge deployment strategy, a
new algorithm that selects the best container placement loca-
tion at the edge of the network. The algorithm classifies the
incoming scaling requests and prioritizes them according to
the user-defined metrics and probes the monitoring compo-
nents to get the most demanded container locations to take
the deployment decision. We implemented a prototype, eval-
uated it using 16 different regions on AWS and compared the
latency between different strategies on Docker Swarm. The
experimental results show that the edge strategy can reduce
the overall latency by up to 5 times compared to the other
default strategies in the best scenario and the amount of client

requests handled under 25ms is up to 1.5 times compared to
the regular strategies.
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