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ABSTRACT
Cloud computing provides a shared pool of resources for
large-scale distributed applications. Recent trends such as
fog computing and edge computing spread the workload of
clouds closer towards the edge of the network and the users.
Exploiting the edge resources e�ciently requires managing
the resources and directing user tra�c to the correct edge
servers. In this paper we propose to profile and group users
according to their interest profiles. We consider edge caching
as an example and through our evaluation show the potential
benefits of directing users from the same group to the same
caches. We investigate a range of workloads and parameters
and the same conclusions apply. Our results highlight the
importance of grouping users and demonstrate the potential
benefits of this approach.

CCS Concepts
•Networks ! Cloud computing; Network resources al-
location; Tra�c engineering algorithms;
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1. INTRODUCTION
Cloud computing provides a shared pool of resources tack-

ling large-scale distributed applications. With the introduc-
tion of SDN, NFV, CDNs, etc., controlling functions are
becoming centralized while service and data are pushed to-
wards the edge. These technologies allow for the provision
of flexible and easily configurable control functions, and fur-
thermore improve scalability and availability of data and
services near the users. Recent approaches, such as fog com-
puting [2,5,23] and edge computing [7], attempt to formalize
the structure of how resources at the edge can be exploited
for data and service provision.

A major concern is the e�ciency of use of edge network
resources. As argued in [3], clouds in cloud computing have
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di↵erent properties and users and applications have di↵er-
ent requirements. Hence, it may be hard to profile the cloud
with a single explicit resource provisioning policy; besides,
most related researches focus on top-down solutions or ig-
nore features and requirements of end users. For instance,
SDN and NFV provide high level network control functions
mostly in the cloud. CDNs distribute content towards end
user without analyzing the characteristics and profiles of
users. To realize the full potential of edge network resources,
we also need to profile user requests. The analysis and pro-
filing of user request can help us free up network resources
for a more targeted provisioning policy. Although users have
heterogeneous and dynamic quality of service requirements,
their interests are likely to be relative steady. Users normally
take a long time to develop an interest which would last a
long time in most cases; these interests change very slowly, at
least relative to the frequency of incoming requests. Nowa-
days the popularity of recommender system may also ac-
celerate the formulation of user interest and steady it. As
studied in [1] and [24], recommender system can influence
user preferences. According to the anchoring theory, user
choice can be heavily influenced by the first piece of infor-
mation o↵ered [21]. Based on the above, we believe user
interests can act as a means of request profiling.

In this paper, we choose content delivery as an example of
a cloud-backed service to illustrate the benefits of profiling
users based on their interest preferences. According to the
forecast of Cisco, IP video tra�c will be 80 percent of all IP
tra�c by 2020 [20]. Also, the continued expansion of social
networks brings lots of user-generated content. Content de-
livery is the main cloud-backed network services today and
not only dedicated CDN providers like Akamai but also large
companies like Google and Facebook are running CDNs.

CDNs are built around caches towards which user requests
are directed. Research in the past has focused on caching
hierarchies, cache replacement algorithms, and cache parti-
tioning, but since these do not take any stand on how users
are directed, they must act in a user-agnostic manner. Nor-
mally, users are directed to the closest cache in order to
minimize network latency and tra�c. However, users in the
same area might have very di↵erent interest profiles, e.g.,
based on age, education, hobbies, and normal re-direction
mechanisms are unable to capture these. All content re-
quested by the users competes for space in the cache. From
an overall system e�ciency point of view, this approach has
two shortcomings:

1. This may be unfair for non-mainstream users. Their
requests have a smaller chance to be cached at the
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Figure 1: Di↵erence of cache server with or without grouping
users

edge because of lower popularity. The requested con-
tent may still be found in the parent cache with higher
latency.

2. There can be a lot of duplicates of same contents in
di↵erent cache servers. It results in waste of cache
servers resource.

This motivates us to propose profiling requests and re-directing
users based on interest similarity. This solution profiles traf-
fic on a higher level of abstraction, comparing with profiling
based on individual specific contents. Figure 1 shows an
example where servers A, B, C and D cache lots of same
contents since users in di↵erent areas share same interests.
With current content popularity based cache strategy, the
edge servers are more likely to cache mainstream contents.
Since the cache size is limited, non-mainstream users have
less chance to utilize the edge cache servers.

Considering the reasons above, we propose grouping users
according to interest similarity to improve cache performance
and e�ciency. As shown in the lower part of Figure 1, if
we can group users with similar interest and redirect their
requests to same cache servers, we can utilize cache space
more e�ciently. Note that Figure 1 shows the ideal case of
perfect profiling, which is likely to be hard to implement in
practice. In this paper we focus on this ideal case to high-
light the potential benefit of grouping users and leave the
exact grouping methods for future work. More specifically,
we make the following contributions:

• We propose a novel profiling strategy, where requests
are grouped according to interest similarity.

• Cache servers receive similar requests with higher prob-
ability. This increases cache hit rates and reduces re-
dundant copies in caches.

• After grouping, cached popular content can serve more
users which saves cache resources and additional re-
sources could be o↵ered to non-mainstream users.

In this paper, we only evaluate the improvement of cache
performance brought by grouping. Defining the practical
grouping mechanisms is left for future work. The rest of
the paper is organized as follows. Section 2 introduces re-
lated work. Section 3 describes the network architecture.

Section 4 presents the simulation model. Section 5 presents
the results and discusses their impact. Finally, Section 6
concludes the paper and presents directions for future work.

2. RELATED WORK
Researchers have proposed some work related with edge

computing. Some work such as [3] also provides ideas re-
garding cloud computing resource provisioning. Work in [17]
and [11] put forward elastic or dynamic resource scaling
schemes. However, profiling edge computing resources based
on user interest similarity is still an open issue. Although
researchers have proposed user interest recognition for some
years, most of related work still remain on the level of iden-
tifying individual users. For instance, [14] introduces identi-
fying users’ preferences based on click history. Work in [12]
proposes an aggregation of user profiles from multiple do-
mains on social web. Some work has already addressed large
scale user interest analysis such as [24]. However, that work
is more about relation between overall user behavior and
popularity of videos. On the other hand, some work also
propose analyzing user interest such as [25], which put for-
ward to merge user profile for better recommendation sys-
tem. Authors in [9] characterize user viewing behavior and
use Mixed Integer Programming to place the segments of
videos optimally. A more similar work was proposed in [6].
However, the authors use one abstract function to represent
the user interest similarity. Similarly, [4] indicates user inter-
est similarity with a variable. The most important di↵erence
between these and our work in this paper is that we evalu-
ate several concrete parameters of user interest similarity to
better understand this problem.

As to content delivery, CDNs such as Akamai use caching
overlays to distribute content more e�ciently [18]. The ma-
jor feature of a CDN is distributed servers and cache hierar-
chy. Information-centric networking (ICN) proposes, among
other aspects, to exploit in-network caching to enable more
e�cient content distribution by addressing content via a
unique name.. Some work has been done focusing on reduc-
ing in-network caching redundancy and improving caching
e�ciency in ICN. ProbCache approximates the caching ca-
pacity of a path [13] . Guo et al. proposed a collaborative
caching guided by content popularity rank [8]. In [15], the
authors evaluate the performance of in-network caching and
conclude that content popularity is one of the most impor-
tant parameters.

As outlined above, Most of related proposals focus on uti-
lizing caches based on content popularity. There is not much
work referring to leveraging grouping users according to in-
terest similarity for better cache performance in CDN, ICN,
or other networks. Currently, we believe that the following,
still unanswered, questions need attention:

1. Would grouping users provide benefits? In this paper,
we show that (in the ideal situation) grouping users
improves overall cache hit ratio markedly.

2. How to implement user grouping, including pattern
recognition and clustering? We need find out the opti-
mistic algorithm for recognizing user interest patterns
and clustering them.

3. How to optimize cache deployment and redirection of
user requests? How to balance of the benefit of group-
ing users and the latency brought by redirection.
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Table 1: Network topologies used in the study

Topology Source nodes Routers Receivers

Tiscali 44 160 1636

Garr 13 27 291

Geant 13 32 328

Datacenter 1 16 160

In this paper, we focus on identifying the ideal benefit of
grouping users regarding cache hit ratio, i.e., the first of the
three open questions above; others are left for future work.
We consider situations of di↵erent user interest distribution
and evaluate the di↵erence in cache hit ratio. This paper is
the first to consider explicitly the influence of di↵erent user
interest profiles and how they impact caches near the edge
of the network. Previous works have mainly focused on opti-
mizing the performance of the cache but have not considered
re-direction of users based on their interest profiles.

3. NETWORK TOPOLOGY
In this paper we use various network topologies to study

the e↵ects of edge cache deployment and user grouping on
the edge caches. Edge cache deployment makes it easier
to understand the di↵erent cache performance in situations
with di↵erent workload and grouping methods. It also helps
isolate the benefit of grouping user from other scheme such
as in-network caching etc.

We use a self-defined topology “Datacenter” and several
real topologies including“Tiscali”,“Garr”and“Geant”. “Dat-
acenter” is a two-layer network which has one core node
serving as origin content source, 16 edge routers serving
as edge cache servers and 10 users connecting to each edge
server. Garr and Geant are parsed from the Internet Topol-
ogy Zoo dataset [10] and Tiscali is parsed from Rocketfuel
dataset [19]. Some adaption is made to the topologies ac-
cording to the assignment of simulation. For instance, we
add 10 users to each edge servers.

The adaption helps us focus on the influence of grouping
users on cache performance regardless of other factors such
as di↵erent number of users connecting to cache servers. The
properties of the topologies are summarized in Table 1. The
cache servers are chosen based the centrality of the routers.

4. SIMULATION
We used Icarus as the simulator for evaluating the perfor-

mance of grouping. Icarus is an ICN simulator for evaluat-
ing cache performance [16]. For the user interest distribution
function, we use the widely accepted Zipfian distribution [22]
as follows:

f(k;↵, N) =
1
k↵PN

n=1
1

n↵

(1)

where frequency of content k out of a population of N con-
tents is f(k;↵, N). N is the number of overall contents and
k is the ranking of the content. We also use k as the ID of
content here. Our simulation concerns several parameters
as follows:

overlap

Zipfian functionf1
f2

f3

f4

Figure 2: Example interest distributions

• ↵ is the value of the exponent characterizing the in-
terest distribution. In the simulations, we set ↵ as
0.8,1.0,1.2.

• rank indicates the integer interval of content IDs that
each user requests for. In the simulations, we set the
interval as a population of 3 ⇤ 105 content.

• rank similarity indicates the overlap ratio of di↵erent
ranks. In the simulations, we set the default
rank similarity as 0, so that users with di↵erent rank
would have entirely di↵erent requests.

• rank number indicates the number of di↵erent pop-
ularity rankings. In the simulations, we set the de-
fault rank num as 7, so that workloads before group-
ing have 7 di↵erent ranks of interest distribution. In
other words, there are by default 7 di↵erent types of
user profiles in the simulation.

• cache size indicates the total size of network cache
as a fraction of content population [16]. The default
cache size is set to 0.001.

• workload indicates the user request distributions with
di↵erent grouping schemes.

Figure 2 shows an example of how the di↵erent ranks and
rank similarities are implemented. We show 4 example inter-
est distributions, f1–f4. The x-axis shows the content items
ranked according to their popularity (possibly di↵erent for
each interest distribution). The y-axis shows the number of
requests generated by the interest distribution for each con-
tent item. Since there are a total of 4 di↵erent popularity
rankings, the ranknumber is 4. Curves f1 and f2 share the
same popularity ranking and their rank similarity is 1 since
they cover the exact same range of content. However, they
have di↵erent ↵ values since the actual popularities of the
objects are di↵erent. Likewise, f4 has a rank similarity of
1 with both f1 and f2, but it counts as a di↵erent rank since
the popularity of the objects is inverted. Requests from f3
overlap with f1, f2, and f4 by 33.3% so their rank similarity

would be 0.33. Since the shapes of f1 and f3 are identical,
they share the same ↵. Using this kind of a model as a basis,
we generate the various workloads used in the simulation.

Our goal is to investigate the e↵ects of the various param-
eters (↵, rank similarity, and rank number) on the perfor-
mance of the caches in the network. As a first step we focus

45



Table 2: Workload definitions

Workload rank number Num of ↵ Num of distribution

R 1,3,5 or 7 1 1,3,5 or 7

R-GR 1(locally) 1(locally) 1(locally)

AR 1,3,5 or 7 6 6,18,30 or 42

AR-GR 1(locally) 6 6

AR-GAR 1(locally) 1(locally) 1(locally)

on evaluating only cache hit rate, but other caching metrics,
e.g., byte hit rate, latency, could also be used. The above
model is flexible enough to support a variety of scenarios.
The workloads we consider are as follows:

• R: Users have interest distributions with di↵erent rank
but same ↵. rank similarity is 0 which means user
groups have entirely di↵erent interests. The number of
groups is determined by the parameter rank but users
are not grouped in any way.

• R-GR: Grouping users with same rank in R workload
After grouping, the users connecting to same cache
servers would have same interest distribution.

• AR: Users have interest distributions with di↵erent
rank and di↵erent ↵, but no grouping of users is per-
formed.

• AR-GR: Grouping users with same rank inAR work-
load, but a group may contain users with di↵erent val-
ues of ↵.

• AR-GAR: Grouping users with same rank and same
↵ in AR workload, i.e., each group has a specific rank
and ↵.

The default rank similarity is set to 0. We also run simu-
lations with di↵erent rank similarity to identify the e↵ects
of it. Most of the simulations have di↵erent rank number

which is at most 7. The cache size is set as [0.001, 0.003,
0.005, 0.007, 0.009, 0.01]. The number of users connecting
to each cache server does not change after grouping.

Table 2 shows the detail of the workloads. The word “lo-
cally” indicates the interest distributions of the users con-
necting to same cache servers. The di↵erent simulations aim
at identifying the benefit of grouping users regarding cache
hit ratio in di↵erent scenarios. For instance, in R and AR

workload, we tried di↵erent numbers of rank. It can help us
identify the factors influencing the benefit of grouping users.
Since we keep each cache node serving the same number of
users as before grouping, there are still some cache servers
connecting to users with di↵erent interest after grouping.
We think this is more close to reality due to the capacity
of cache servers because it is hard to actually put all users
with same interest under a same cache server and this re-
flects some inaccuracies in the grouping.

5. RESULTS
The results are shown in Figure 3 separately for each of

the workloads. We show one figure per scenario (R, R-

GR, AR, AR-GR, AR-GAR) and each figure shows the
requests observed by a single cache in the scenario. The
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(a) Request distribution with workload R, in which there
are 1 ↵ and 7 rank as per Table 2
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(b) Request distribution with workload R-GR, which is the
request distribution for a cache server after grouping Fig-
ure 3a. There is 1 ↵ and 1 rank as per Table 2
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(c) Request distribution with workload AR, in which there
are 7 ↵ and 7 rank as per Table 2
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(d) Request distribution with workload AR-GR, which is
the request distribution for a cache server after grouping
Figure 3c according to rank. There are 7 ↵ and 1 rank as
per Table 2
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(e) Request distribution with workload AR-GAR,which is
the request distribution for a cache server after grouping
Figure 3c according to both ↵ and rank. There is 1 ↵ and
1 rank as per Table 2

Figure 3: Request distribution in di↵erent workload
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Figure 4: Cache hit rate vs. cache size.

x-axis shows the content IDs in the whole workload and the
y-axis shows the number of requests received by that cache
in the simulation. As we can see, grouping users helps signif-
icantly narrow down the range of requests that a cache sees.
For instance, in Figures 3a and 3b we clearly see the e↵ects
of various popularity rankings in Figure 3a as spikes in re-
quests. When users are grouped according to their interests,
the request pattern is much close to a single zipf-distribution,
as shown in Figure 3b. Likewise, Figure 3e has a more con-
centrated request distribution than Figure 3d and Figure 3c,
as expected. Given that we use a priori knowledge to as-
sign groups perfectly, the results reflect an ideal situation,
but they clearly illustrate the potential of this method.

The above results show the e↵ect of grouping on the tra�c
workloads of the caches, and we now turn to evaluating the
performance of the cache as a function of the various param-
eters described in Table 2. Although the figures below show
results for all workloads in the same figure, the exact num-
bers can only be compared among (R, R-GR) and (AR,
AR-GR, and AR-GAR) because of the di↵erent ↵ values
in the experiments. The exact hit rate numbers are not as
important as the relative di↵erences in performance in the
di↵erent workloads.

The key findings can be summarized as follows:

1. cache size: As Figure 4 shows, the cache hit rate in-
crease with bigger cache size, as is to be expected. As
we see, AR-GR and AR-GAR improve the cache hit
rate compared withAR;R-GR likewise improves over
R. This result shows that grouping users can benefit
cache hit rate independent of cache size.

2. rank number : As Figure 5 shows, cache hit rates of
all workloads decrease when rank number increases.
This is expected since more ranks (i.e., more sets of in-
terest distributions) will bring more di↵erent request
distributions. However, grouping serves to alleviate
the e↵ect and remains e↵ective even with a large num-
ber of di↵erent ranks. Note that the cache size used in
Figure 5 is 0.001, i.e., the smallest in our study. Larger
cache sizes exhibited the same kind of behavior.

3. rank similarity: As mentioned before, the default
rank similarity is set to 0 in most simulations. We
also investigated the e↵ects of overlapping interests by
varying the similarity from 0% to 100%. As Figure 6
shows, rank similarity does not influence cache hit
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Figure 5: Cache hit ratio vs rank number.
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Figure 6: Cache hit ratio vs rank similarity.

ratio much for most of the cases. Two notable observa-
tions are evident in the figure. First, all except R-GR

show a jump at the end when similarity reaches 100%.
The explanation is that when similarity reaches 100%,
the distributions become identical (except for di↵erent
↵) and therefore all caches see the same tra�c. An-
other is the jump in R-GR when similarity increases
beyond 0%. While we do not have a full explanation
for this phenomenon, we conjecture the reason to be re-
lated to way we have implemented similarity by sliding
the request distributions over one another, as Figure 2
shows.1 Understanding the reasons behind this and
investigating it thoroughly are left for future work.

6. CONCLUSION AND FUTURE WORK
In this paper we have considered the problem of group-

ing users for more e�cient request processing in edge caching
scenarios. Our simulations show that grouping users can im-
prove cache hit rate in many di↵erent scenarios. We have in-
vestigated various grouping strategies and results have con-
sistently shown that when user interest profiles are di↵erent
from each other, grouping users of one interest profile into
one edge cache yields considerable benefits in terms of overall
cache performance. Although our work was done under the
assumption of an ideal distribution of user groups to caches,
it highlights the potential for improvement in caching by
this simple technique.
1We have verified the simulation code and ruled out errors
in there.
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Future work needs to tackle three main issues. First, we
have assumed that any user can be re-directed to any cache,
regardless of the locations of the two. While in principle
this is feasible to do, it may result in significant increases in
user-perceived latency. A more realistic look at which clients
could be re-directed to which caches could be included as
part of the work. Second, it is unlikely that the number
of user groups is smaller than the number of edge caches,
thus one cache may be forced to serve multiple user groups
with di↵erent interest profiles. An obvious solution would be
to attempt to assign user groups that have similar interest
profiles in the same caches. Third, we have not considered
the practical implementations of how the groups are formed.
Various existing classification and clustering algorithms can
most likely be used to achieve the groupings and evaluating
their e�ciency is part of our future work.
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