
Bricklayer: Resource Composition on the Spot Market

Walter Wong∗, Lorenzo Corneo†, Aleksandr Zavodovski∗, Pengyuan Zhou∗, Nitinder Mohan§, Jussi Kangasharju∗
∗Department of Computer Science, University of Helsinki, Finland

Email: {walter.wong, aleksandr.zavodovski, pengyuan.zhou, jussi.kangasharju}@helsinki.fi
†Department of Information Technology, Uppsala University, Sweden

Email: lorenzo.corneo@it.uu.se
§Department of Informatics, Technical University Munich, Germany

Email: nitinder.mohan@tum.de

Abstract—AWS offers discounted transient virtual instances
as a way to sell unused resources in their data-centers, and
users can enjoy up to 90% discount as compared to the
regular on-demand pricing. Despite the economic incentives
to purchase these transient instances, they do not come with
regular availability SLAs, meaning that they can be evicted at
any moment. Hence, the user is responsible for managing the
instance availability to meet the application requirements. In this
paper, we present Bricklayer, a software tool that assists users to
better use transient resources in the cloud, reducing costs for the
same amount of resources, and increasing the overall instance
availability. Bricklayer searches for possible combinations of
smaller and cheaper instances to compose the requested amount
of resources while deploying them into different spot markets
to reduce the risk of eviction. We implemented and evaluated
Bricklayer using 3 months of historical data from AWS and
found out that it can reduce up 54% of the regular spot price
and up to 95% compared to the standard on-demand pricing.

Index Terms—Cloud computing, spot instances, availability

I. INTRODUCTION

Cloud computing offers many benefits to users, such as
flexible on-demand resource allocation and a pay-as-you-go
pricing model. One of the main drivers for cloud computing
adoption is the reduction of upfront capital investment on
infrastructure (CAPEX) by leasing servers in the public cloud
as the service grows or scaling servers in the cloud to handle
seasonal peak workloads. Cloud providers offer a wide range
of virtual server options and subscription models, for instance,
reserved, on-demand, and transient instances (known as spot
instances in AWS). These spot instances can be up to one
order of magnitude cheaper compared to regular prices and,
as such, many research works have been done to explore the
possible benefits on them in different scenarios, from batch
processing [14], [16], [22] to web-serving [11], [13].

Despite the attractiveness of the spot instances, they come
with some risks attached, for example, the threat of eviction
and the financial risk. Spot instances are sold as instantaneous
spare capacity from a cloud provider; thus, they do not enjoy
the same Service Level Agreement (SLA) on availability as
regular on-demand instances. Cloud providers revoke spot
instances to fulfill requests for on-demand servers, which have
a higher price point compared to the spot instances. Hence,
spot instances can be evicted with a 2-minute notice and,
therefore, users need to be aware of this characteristic. The
financial risk is due to the nature of the spot market, where
prices are driven by supply and demand. Whenever a user bids

for a spot instance, the user pays for the current market price
of the spot instance rather than the bid price. Therefore, any
variations on the price between the market price to the bid
price is paid by the user. Our observation of historical spot
market data of a 3-month period shows that, on average, the
user ends up paying double the lowest market price over the
period.

Many research has been done to optimize the use of spot
instances, for example, better bidding strategies to get the
best pricing and reduce the eviction risk [10], [12], [23],
[25], increase application availability by proactively migrating
applications between spot and on-demand instances [17], [18],
[20] and also strategies to mix-and-match spot and on-demand
instances to trade availability for some cost reduction [7].
However, one overlooked issue is the bulk eviction problem,
where all spot instances of the same type are evicted simulta-
neously due to the same bid price. This occurs because many
bidding strategies optimize for the best bidding price, and
they use multiple instances of the same type and price, thus,
whenever the market price goes over the bidding price, all
instances are simultaneously evicted from the cloud provider.
Another overlooked problem when using spot instances is
the application running on top of them, which has different
availability requirements and can be broadly divided into
two main types: data-intensive applications such as big data
and machine learning which can tolerate time delay and
some failures [14], [16], [22], [24], and always-on interactive
applications, e.g., e-commerce and social networks, which
need to be always online.

In this paper, we present Bricklayer, a software tool to assist
users in getting the best combination of spot instances that
meets the application requirements on cost and availability in
the cloud. Rather than receiving a specific spot instance type
and finding out the best bidding strategy for it, Bricklayer
receives the application resource requirements and constraints
and looks for the best spot instance set that can fulfill
those requirements, either at optimizing for overall cost or
improved availability, allowing for horizontal scaling. Under
the hood, Bricklayer checks what is the cheapest AWS EC2
Computing Units (ECU) price for a given virtual hardware
family, e.g., CPU or GPU, calculate the price volatility and
eviction rates for all instances available in the spot market
and return the composed set of spot instances that fulfill
the user’s requirements. The main benefit of breaking up

978-1-7281-5089-5/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

larger resources into smaller ones is that each individual
spot instance can be allocated to different spot markets, thus,
having different price variations and eviction rates as they
now belong to different spot markets. We implemented and
evaluated Bricklayer using 3 months of historical spot market
data from AWS and evaluated the spot instance composition
for the two main categories of application, namely, batch-type
and always-on applications. The experimental results show
that Bricklayer can achieve up to 54% discount over the
spot instance pricing and up to 95% discount as compared
to regular on-demand pricing on AWS while maintaining the
same level of availability.

The paper is divided as follows. Section II presents the
background information on AWS spot market. Section III
describes the design of Bricklayer. Section IV presents the
implementation and the main components of the tool. Section
V shows the evaluation scenarios and the experimental results.
Section VI presents the related work and compares them with
our work. Finally, Section VII concludes the work.

II. SPOT INSTANCES BACKGROUND

All major cloud providers offer transient instances as a
way to sell under-utilized resources to the customers, for in-
stance, Amazon AWS Spot Instances [3], Google preemptible
instances [9], and Azure low priority instances [8]. AWS Spot
model uses a dynamic pricing model while Google and Azure
use a fixed price model; thus, we will focus our model on the
AWS spot market in this paper.

A. Amazon EC2 Spot Market

AWS offers three subscription models for virtual instances:
reserved, on-demand, and spot instances. Reserved instances
provide up to 75% discount compared to the on-demand
price [2]. However, the subscriber is bound to a 1 to 3-year
contract (which may or may not be paid upfront). The second
option is on-demand, where the user pays for the resource
consumption (pay-as-you-go model). In both models, the
subscriber has an SLA with AWS where the latter guarantees
minimum availability for the virtual machines and also that
they are non-revokable, i.e., they cannot be preempted by the
cloud provider and have their resources taken back without
the subscriber’s consent. Lastly, the spot market is where
resources are offered with big discounts (up to 90% off)
compared to the on-demand price but without the regular
SLA guarantees. Another drawback is the cloud provider can
reclaim the resources back after giving just a short notice to
the subscriber.

In order to get a spot instance, the customer places a bid
in the AWS Spot market. If the bid price is higher than the
current market price of the resource, the user will get the
instance and pay for the market price. Therefore, the user
places a bid with the maximum acceptable price to pay. Once
the bid is placed in the spot market, it cannot be changed, and
the bid will remain active until the spot instance is evicted
or terminated. In case the instance spot market price goes
above the bid price, the user will receive a 2-minute notice

Instance Family Min. ECU (¢/h) Max. ECU (¢/h) Diff. (%)
Compute optimized 0.002600 0.008958 344.54

General purpose 0.003154 0.011854 375.81
Storage optimized 0.014276 0.025212 176.60
Memory optimized 0.003560 0.037692 1,058.77

FPGA instances 0.019038 0.021064 110.06
GPU instances 0.022979 0.043650 189.95

TABLE I: ECU unit price vs. instance family on AWS.

about the virtual machine preemption, and then it will be
terminated. There are some works [21], [25] that explore the
best bidding strategy at the spot market, leveraging the spot
pricing distribution, and choosing the least volatile one. AWS
recommends that customers bid for the on-demand price to
reduce the chance of eviction [4].

One complexity in the spot market is the number of
available options to choose from. The spot market is divided
into multiple regions (21 regions), availability zones, instance
families and types, resulting in more than ∼6k separate spot
markets, where each instance type in a different availability
zone has a different spot pricing. Therefore, the same instance
in the same region but deployed in a different availability zone
may have different prices. In addition to that, spot instances
are also divided into several instance families, e.g., general-
purpose (A1, T1) and within each family, their sizings (large,
x2.large, etc.).

Despite the attractive pricing for the spot instances, most of
the time, they cannot be used out-of-box for most applications.
Some instances can be preempted over 10 times a day,
affecting application performance and task completion times.
Another limitation is that the spot instances can be preempted
in groups, i.e., if the market price for an instance type goes
over a bid that requested a group of instances, they will be
preempted all at once.

B. Spot Market Analysis

In this section, we will analyze the main metrics that we
will use to drive the instance selection decision. For that, we
will use 3 months of historical data (March 28th to June 28th,
2019) and analyzed the behavior of three metrics: the EC2
computing unit (ECU) pricing, instance volatility regarding
price and the overall instance availability over time.

ECU is a metric provided by AWS to ease the comparison
between instance capacity through AWS internal benchmarks.
In our case, we will use it to calculate the ECU unit price (1
ECU) for each instance type and pick the cheapest one on the
list. Table I compares the ECU unit price for each instance
type in different instance families. The results show that ECU
unit price has a high variance within the same instance family
(up to 10 times) and between different instance families (13
times). Another interesting finding shown in Fig. 1 is that there
is no economy of scale on bigger machines (due to higher
ECU density) or price increase (as more powerful machines
would be more expensive). For that, there is a minimum ECU
price that is roughly the same for all machines (except for
FPGA and GPU instances). Note that those prices are dynamic

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: ECU price vs. instance type Fig. 2: Volatility (Top 10) Fig. 3: Volatility (Bottom 10)

Fig. 4: Number of evictions over 90 days period vs. instance
type

and vary throughout the day, and our goal is to pick the
cheapest option to minimize the cost on AWS.

Another important conclusion is that there is no difference
between getting a bigger machine or a set of smaller machines
to compose to a bigger machine. Although the cost is the
same, selecting a set of smaller machines from different spot
markets to compose to a bigger machine provides higher
availability as it reduces the bulk evictions and also the
individual eviction rate. Therefore, the main takeaways from
the ECU unit price analysis are: (i) select the cheapest ECU
unit price instance within the same hardware family, (ii) there
is almost no difference between minimum ECU unit price
between a small or a large instance on AWS, and (iii) a set
of smaller instances are preferred to compose to a bigger
instance as they provide higher availability due to different
spot markets.

The second metric to be analyzed is the price volatility of
each instance. The goal is to select the instances with lower
price volatility, so the user doesn’t end paying much more
than the spot base price. Fig. 2 shows the price volatility of
the top 10 instances in the us-east-1 region. Some prices can
hike up to 10x (e.g., m2.2xlarge) and also be the same as the
on-demand pricing, affecting the overall discounted price that
the user may have. Fig. 3 shows instances that did not have
changes in the price over the 90 day period, and those are the
instances that Bricklayer should preferably select. Therefore,
the main takeaway for the second metric analysis is that not all
instances are equal in price volatility, and we should focus on

those with lower prices and volatility (or higher durability).
The third metric is the instance eviction rate, i.e., the

number of times an instance is shutdown by AWS. This
metric is important to differentiate the instances with a higher
eviction rate (we should avoid them) and the lower eviction
rate. Fig. 4 shows the number of evictions for the top 10
most evicted instances. Some instances can be evicted up to 6
times per day, on average. Although some instances may have
smaller number of evictions, they can actually present lower
availability due to longer periods of downtime. Therefore, the
key takeaway is to select instances with lower/lowest eviction
rate from the AWS list.

III. SYSTEM DESIGN

The first step of Bricklayer design is to define which kind
of applications are going to run on top of it. In one end of the
supported application spectrum, we have the time-sensitive,
always-on type of application. These always-on applications
need minimum downtime as some of them may result in
financial losses, e.g., e-commerce and social networks. For
example, an outage of 5 minutes costs half-million to Google,
and a 10-minute downtime on Amazon may cost 2 million [1],
[5]. Therefore, the paramount of always-on applications run-
ning over spot instances is to minimize the eviction rate on
spot instances.

On the other end of the application spectrum, we have the
delay, fault-tolerant, and batch-type applications, where users
can tolerate some delays in the job processing time. Some
examples in this category include big data processing and
machine learning workloads. These kinds of applications can
trade some delay for possible reduced costs in the processing;
thus, we want to minimize the overall cost of applications
running over spot instances.

A. Metrics

In order to be able to compare and decide which instances
are a better fit for each kind of application, we elected the
following criteria for spot instance comparison:
ECU unit price. The ECU unit price is the baseline metric
to compare the computing power between different instances
within the same AWS family type (thus, share the same un-
derlying hardware). It is calculated by dividing the instance’s

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

hourly price by the number of instance’s ECUs. Bricklayer
aims to prioritize the selection of instances with the cheapest
ECU unit price within the same AWS instance family.
Price volatility. Price volatility represents the amount of vari-
ation in the instance price over time, and it is calculated as the
relative standard deviation of the instance price. Bricklayer
aims to select instances with lower price volatility, which
means a lower financial risk of overpaying and more price
predictability.
Availability. Availability measures the instance uptime over a
given period of time, discounting the number of times the
instance has been evicted due to price eviction, i.e., spot
instance price going over the on-demand pricing. Bricklayer
will choose instances that have lower eviction rates due to
price eviction.

With those 3 metrics, Bricklayer can optimize for always-on
type of applications (maximize for availability) or batch-type
of applications (minimize cost). Next, we will formalize the
Bricklayer model, metrics, and the problem statement.

B. Model
Let be M = {m : m < N ∧ m ∈ N+} the set of all the

available instances provided by AWS, where N ∈ N+ is their
availability upper bound. Additionally, we model the set of the
K spot markets as S = {s : s ∈ N+∧s < K}. Consequently,
we indicate the set of all the available instances in the spot
market s ∈ S with Ms, that is, Ms ⊆ M and therefore M =⋃

∀s∈S{Ms}. We refer to the ith virtual machine in set M
with the notation mi. Additionally, ∀m ∈ M there exists a
set of three functions that return, respectively, the instance
type, the available number of ECUs and the price per hour.
We define instance type function as t : M → N where the
return type could be seen as an integer number that maps to a
particular instance type defined by AWS, e.g., m2.xlarge.
The function e : M → N simply returns the number of ECUs
available in a particular instance in M . Finally, the hourly
price, at time τ , of a spot instance is provided by the function
p : (M, τ) → R+. For convenience, we define the set of all the
instances of type i as Ti = {m : m ∈ M ∧ t(m) = i} and the
set of all active instances as A = {m : m ∈ M ∧on(m) = 1}
where on : M → 0, 1 is a binary function returning 1 if the
instance is active or 0 otherwise. To be noticed, we use the
notation As to refer to the set of all the active instances in
spot market s and, whenever not indicated, it is assumed the
set of all active applications regardless of their spot market.
ECU unit price. The ECU unit price, x, is a metric defined
as the ratio between the hourly price of an instance m ∈ M
and its number of ECU. To put it formally:

x(m, τ) =
p(m, τ)

e(m)
(1)

Price volatility. We calculate the price volatility of x over
time by means of its relative standard deviation, that is, the
ratio between the standard deviation and the mean. We define
the price variability, v, of an instance, m, as follows:

v(m, τ) =
σ(P)

μ(P)
(2)

where P = {p(m, τ) : τ ∈ [τMIN ; τMAX]}, and
[τMIN ; τMAX] is the time period under investigation subject
to price variability calculation.
Availability. The life-cycle of an instance is dictated by the
previously defined on function so that we can detect 1-to-
0 transitions, meaning active-to-evicted, and increment the
eviction rate. We introduce the falling edge detection function
as δ : [{0, 1}] → (0|1), taking as input the values returned by
the on function and returns either 0 (evicted) or 1 (active). It
is possible to define the eviction rate, d, as:

d =
∑

∀m∈A

δ(on(m)) (3)

C. Problem statement

We now formalize the problem statement for the always-on
and batch-type category of applications. These two types have
different objectives and, therefore, two different optimization
problems.
Batch-type applications. This category of applications can
tolerate some delays and, therefore, the objective is to reduce
the ECU unit price of the overall system, x, while still
satisfying the requirement on the number of ECUs, ECUreq .

minimize
∀m∈A

x(m, τ)

s.t. ∑
∀m∈A e(m) = ECUreq

(4)

Always-on applications. This category of applications have
strict uptime requirements and, therefore, the objective is to
maximize the overall system availability by selected as many
as possible different instances from different spot markets.

maximize |Ŝ|
s.t.

Ŝ ⊆ S
A =

⋃
ŝ∈Ŝ Aŝ∑

∀m∈A e(m) = ECUreq

(5)

The result of this maximization is the best set of active
instances from different spot markets, A, delivering the best
possible availability.

IV. IMPLEMENTATION

We implemented the core Bricklayer features in Python, as
shown in Fig. 5. Bricklayer has four main components: (a)
Bricklayer engine, responsible for providing the best set of
spot instances based on the application type; (b) Bricklayer
analytics, responsible for analyzing the spot market pricing;
(c) the historical data parser, which fetches AWS spot pricing
and stores in the database; and (d) the MongoDB which stores
all pricing information and analytics data.

The Bricklayer Engine uses Google Operation Research
Tools for the spot instance set combination and optimization
based on the application type (always-on vs. batch-type) [6].
The Bricklayer Analytics uses Pandas framework [15] to
analyze the historical data and perform the analytics over
the metrics. The Historical Data Parser fetches the pricing

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Bricklayer architectural components.

from AWS and stores it in the MongoDB for the Bricklayer
Analytics and the Engine.

Bricklayer interface can be accessed through a REST API
in the Bricklayer engine. Users can submit resource requests
in JSON format, and the engine will return with the best set of
instances for the given application type and also the metrics
calculated over the historical data.

V. EVALUATION

We implemented and evaluated Bricklayer in two types of
application scenarios: batch processing and always-on appli-
cations. For the input and spot price analysis and optimization,
we used the historical spot market data between 29-03-2019
to 29-06-2019 preloaded in the Mongo database. This data is
used by Bricklayer Analytics to calculate the ECU, volatility,
and eviction rates for each instance in the evaluation period.

We use four popular virtual server instance sizings as
a baseline for resource requests to the Bricklayer engine,
namely: 16 vcpus (60 ECUs), 32 vcpus (131 ECUs), 64 vcpus
(262 ECUs), and 96 vcpus (347 ECUs). For each day, starting
on 29-03-2019, we will issue four requests (one for each size)
to Bricklayer engine REST API to analyze and provide the
best combination of resources to fulfill the requirement.

In order to evaluate the correctness of our implementation,
we used Bricklayer to calculate all resource sets resulted from
the four requests for all days of the historical dataset. We
expect that for all days in the evaluation period, the algorithm
will always provide a cheaper price for any request compared
to a regular single instance available in the spot market on
that given day.

Fig. 6 shows the results of Bricklayer for price optimization
compared to regular instance prices for sizes 16, 32, 64 and
96 vcpus. The results show that Bricklayer is able to provide a
set of smaller spot instances that can be combined to provide
the same virtual resource amount but with 50% discount,
on average, and, in some cases, up to 88% off compared
to regular spot instances. Compared to on-demand instances,
Bricklayer can reduce up to 95% of the regular on-demand
price. This is possible because Bricklayer will look for the
cheapest instance available at the spot market at a given time
and create a resource set on that instance. In some cases,
Bricklayer will recommend multiple instances of the same

instance type, for instance, 4 instances of the m1.xlarge, if it
finds that this is the cheapest price for the ECU over all spot
instances, but this may result in lower availability compared
to picking up different instance types to compose a resource
type. The reason is that the price increase in a given instance
type may lead to bulk evictions of all instances. The price
optimized resource set is more suited for the fault-tolerant
batch type of applications, which can re-run jobs in case of
failure without a higher impact on the system. In case the
application requires higher availability, Bricklayer allows for
trading off cost for higher availability, which we will analyze
next.

Fig. 7 shows the spot instance price variation vs. the
number of different spot markets. By increasing the number
of different spot markets, we reduce the risk of bulk eviction.
The reason for that is that the chance of price increase for
all virtual instances at a given time is lower compared to a
single one, and the change decreases as the number of spot
markets increases. For example, in the first figure, having one
instance type (e.g., m1.xlarge) will yield the cheapest resource
set (in this case, $0.155/h). By having two instance types (or
instances in two different spot markets), the price increases to
$0.19/h for the same amount of processing power. Therefore,
users can pay a premium in order to have a resource set
with higher availability. On average, choosing more distinct
instance types have an increase of 24% in the first additional
distinct instance, and further distinct instances add up roughly
3%. The reason is that Bricklayer is not selecting the cheapest
instance type available for the set, but adding the second, third
and so forth cheapest instances, resulting in a higher composed
price.

Fig. 8 shows the total price of the composed resource
set over the 90 day period vs. the number of distinct spot
markets (or instances types) and the number of required
instances. For this evaluation, Bricklayer only selected the
spot instances with the lowest volatility, and eviction rate;
thus, all selected instance types in this evaluation have not
been evicted during the 3 month period due to price increase.
In Fig. 8(a), we compared the total price between regular off-
the-shelf standalone spot instances (r4.4xlarge, m5.4xlarge,
and r5.4xlarge) with the Bricklayer composite set, shown as
opt-<number of distinct instance types>. For instance, if the
user wants to get the cheapest price option from Bricklayer,
she will use 8 instances of the same type (opt-1 model).
However, if she wants to reduce the change of bulk eviction,
she can choose instances from different spot markets, which
results in higher prices. However, the number of instance may
reduce as Bricklayer will get bigger instances to fulfill the
requested resource requirements.

VI. RELATED WORK

HotSpot [18] uses containers within spot instances to mi-
grate the applications between different instances within the
same availability zone. It periodically computes the lowest
spot price in the market and proactively migrates to a new
instance to avoid forced preemption. The main benefit of

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Cost comparison between the naı̈ve selection of spot instances vs. optimized spot instance selection.

Fig. 7: Cost comparison between number of different spot markets.

Fig. 8: Comparison between total cost over period of 3 months vs. number of distinct spot markets and number of instances
of the same spec. All instances have availability of 100% as they have not been evicted by price.

HotSpot is it doesn’t require any changes to the application
inside the container. Compared to Bricklayer, the latter spreads
the eviction risk among a set of spot instances, which can
be located in different spot markets. With that, the user can
reduce even more the risk of eviction compared to the single
instance model in HotSpot.

SpotOn [20] is a batch computing service running on top
of spot instances, allowing for automatic selection of spot
instances and implementing fault tolerance mechanism to
mitigate data loss without modifying the application. SpotOn
uses containers to encapsulate jobs with their dependencies,
and it may use either reactive or proactive container state

checkpointing in the disk. In the latter case, the batch com-
puting engine periodically checkpoints the job information in
the disk, and, in case of an instance termination, SpotOn can
start a container migration to a new instance or deploy a new
spot instance and use the last saved checkpoint data. Although
Bricklayer does not implement the checkpointing mechanism
available on SpotOn, Bricklayer can leverage such mechanism
to save intermediate application state during runtime and
restoring it in case of failure, resulting in reduced processing
time.

SpotCheck [17] describes a derivative cloud market where
SpotCheck purchases cloud resources from the big cloud

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

providers and resell it with customizations to smaller cus-
tomers. The contribution is to provide with different solu-
tions and specialized customizations to support customers
specific use-cases that are not supported by the original cloud
provider. SpotCheck allows running customers’ applications
within nested VMs inside spot servers whenever possible
and transparently migrate to on-demand servers whenever the
spot server is revoked. In the similar nested virtualization
solution, SuperCloud [19] is a cloud architecture running
over OpenStack that integrates multiple cloud providers and
allows for live application migration across those providers
using Xen virtualization. Supercloud uses nested virtualization
to enable the complete VM migration from one server to
another, thus allowing users to relocate virtual machines from
one cloud provider to another without disrupting the running
application.

VII. CONCLUSION

In this paper, we presented Bricklayer, a resource com-
position tool over AWS spot instances. Bricklayer gets the
resource requirements, constraints, and application type from
the user and optimizes for cost or availability. In order to
accomplish the optimization process, Bricklayer computes
the ECU unit price, price volatility, and overall instance
availability for each instance in the spot market and selects
the ones that fulfill the requirements. Additionally, Bricklayer
can select instances from distinct spot markets to reduce the
bulk eviction risk. We implemented and evaluated Bricklayer
with AWS historical data, and the results show that the costs
can be reduced up to 54%, on average, compared to regular
spot instances, and up to 95% compared to regular on-demand
instance prices without compromising the availability aspect.

ACKNOWLEDGMENTS

This work was supported by the Academy of Finland in the
BCDC (314167), AIDA (317086), WMD (313477) projects
and by the Swedish Foundation for Strategic Research in the
project “Future Factories in the Cloud” (GMT14-0032).

REFERENCES

[1] 5-minute outage costs Google $545,000 in revenue. https://venturebeat.
com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/,
2019. Accessed: 2019-06-01.

[2] Amazon EC2 Reserved Instances Pricing. https://aws.amazon.com/ec2/
pricing/reserved-instances/pricing/, 2019. Accessed: 2019-06-01.

[3] Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot/, 2019.
Accessed: 2019-06-01.

[4] Amazon Spot Instance Advisor. https://aws.amazon.com/ec2/spot/
instance-advisor/, 2019. Accessed: 2019-06-01.

[5] Cyber Monday: Do You Know the Cost of
Your System’s Downtime? https://thenewstack.io/
cyber-monday-do-you-know-the-cost-of-your-systems-downtime/,
2019. Accessed: 2019-06-01.

[6] Google Operations Research Tools. https://developers.google.com/
optimization/, 2019. Accessed: 2019-06-01.

[7] How Spot Fleet Works - Amazon Elastic Compute Cloud. https://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html, 2019. Ac-
cessed: 2019-06-01.

[8] Low-priority VMs in Batch. https://azure.microsoft.com/en-us/pricing/
details/batch/, 2019. Accessed: 2019-06-01.

[9] Preemptible VM Instances. https://cloud.google.com/compute/docs/
instances/preemptible, 2019. Accessed: 2019-06-01.

[10] Weichao Guo, Kang Chen, Yongwei Wu, and Weimin Zheng. Bidding
for highly available services with low price in spot instance market. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, pages 191–202, New
York, NY, USA, 2015. ACM.

[11] Aaron Harlap, Andrew Chung, Alexey Tumanov, Gregory R. Ganger,
and Phillip B. Gibbons. Tributary: spot-dancing for elastic services with
latency slos. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 1–14, Boston, MA, July 2018. USENIX Association.

[12] Xin He, Prashant Shenoy, Ramesh Sitaraman, and David Irwin. Cutting
the cost of hosting online services using cloud spot markets. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’15, pages 207–218, New
York, NY, USA, 2015. ACM.

[13] Qin Jia, Zhiming Shen, Weijia Song, Robbert van Renesse, and Hakim
Weatherspoon. Smart spot instances for the supercloud. In Proceedings
of the 3rd Workshop on CrossCloud Infrastructures & Platforms,
CrossCloud ’16, pages 5:1–5:6, New York, NY, USA, 2016. ACM.

[14] Pedro Joaquim, Manuel Bravo, Luı́s Rodrigues, and Miguel Matos.
Hourglass: Leveraging transient resources for time-constrained graph
processing in the cloud. In Proceedings of the Fourteenth EuroSys
Conference 2019, EuroSys ’19, pages 35:1–35:16, New York, NY, USA,
2019. ACM.

[15] Wes McKinney. Data structures for statistical computing in python. In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the
9th Python in Science Conference, pages 51 – 56, 2010.

[16] Prateek Sharma, Tian Guo, Xin He, David Irwin, and Prashant Shenoy.
Flint: Batch-interactive data-intensive processing on transient servers.
In Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 6:1–6:15, New York, NY, USA, 2016.
ACM.

[17] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant
Shenoy. Spotcheck: Designing a derivative iaas cloud on the spot
market. In Proceedings of the Tenth European Conference on Computer
Systems, EuroSys ’15, pages 16:1–16:15, New York, NY, USA, 2015.
ACM.

[18] Supreeth Shastri and David Irwin. Hotspot: Automated server hopping
in cloud spot markets. In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, pages 493–505, New York, NY, USA, 2017.
ACM.

[19] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Weijia Song, Hakim Weath-
erspoon, and Robbert Van Renesse. Supercloud: A library cloud for
exploiting cloud diversity. ACM Trans. Comput. Syst., 35(2):6:1–6:33,
October 2017.

[20] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and
Prashant Shenoy. Spoton: A batch computing service for the spot
market. In Proceedings of the Sixth ACM Symposium on Cloud
Computing, SoCC ’15, pages 329–341, New York, NY, USA, 2015.
ACM.

[21] ShaoJie Tang, Jing Yuan, and Xiang-Yang Li. Towards optimal bidding
strategy for amazon ec2 cloud spot instance. In Proceedings of the 2012
IEEE Fifth International Conference on Cloud Computing, CLOUD ’12,
pages 91–98, Washington, DC, USA, 2012. IEEE Computer Society.

[22] Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and
Thomas Moscibroda. Tr-spark: Transient computing for big data
analytics. In Proceedings of the Seventh ACM Symposium on Cloud
Computing, SoCC ’16, pages 484–496, New York, NY, USA, 2016.
ACM.

[23] Yang Song, M. Zafer, and Kang-Won Lee. Optimal bidding in spot
instance market. In 2012 Proceedings IEEE INFOCOM, pages 190–
198, March 2012.

[24] Chengliang Zhang, Minchen Yu, Wei Wang, and Feng Yan. Mark:
Exploiting cloud services for cost-effective, slo-aware machine learning
inference serving. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 1049–1062, Renton, WA, July 2019. USENIX
Association.

[25] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and
Xinyu Wang. How to bid the cloud. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, pages 71–84, New York, NY, USA, 2015. ACM.

Authorized licensed use limited to: Helsingin Yliopisto. Downloaded on November 01,2020 at 17:56:17 UTC from IEEE Xplore. Restrictions apply.

